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Final Technical Report 

 
 
1. Executive Summary 
 
CEDA (Catch and Effort Data Analysis) and LFDA (Length Frequency Distribution Analysis), 
are two pc-based software packages, designed for use by fishery officers in developing 
countries when carrying out fishery stock assessments, that were developed under the FMSP 
and first released in 1992. Both were developed for the then universally used MS-DOS 
operating system.  More than 50 copies of the software packages were distributed to 
scientists and scientific organisations in developing countries during the year after their first 
release.  Feedback from users of the original versions of the packages and experience gained 
during a follow-up adaptive project subsequently led to revisions of the software packages 
being made.  Revised versions (CEDA Version 2.01 and LFDA version 4.01), which still used 
MS-DOS, but incorporated a Windows-like menu system, were released in 1995.  By 1999, 
more than 150 copies of the revised packages were in use in developing countries worldwide. 
More recent feedback has been that the packages are getting harder to use with the modern 
Windows 95 or later operating systems, and the lack of a Windows-standard user-interface.  
Accordingly this project aimed to produce revised Windows versions of the two packages, 
which would then be able to be distributed to users via the Internet via the MRAG/FMSP 
website. 
 
Rewritten in Microsoft Visual Basic, the two software packages have standard Windows user 
interfaces and a very extensive context-sensitive on-line help systems.  They also incorporate 
comprehensive tutorials illustrating the use of the packages, and separate guides on 
statistical issues and on use of population dynamics models.  The LFDA packages allows 
users to estimate non-seasonal and seasonal growth curves from length frequency data using 
three alternative methods. Given these estimated growth curves, further analysis allows 
estimation of total mortality rates and estimation of age frequency distributions. The CEDA 
package  allows users to fit a number of alternative population dynamics models to catch and 
effort data, thereby estimating stock sizes and important management quantities such as the 
maximum sustainable yield.  
 
The improved scientific advice available through the use of these packages will considerably 
enhance the likelihood of sustainable management of vital fishery resources, which in 
developing countries often represent major sources of animal protein, employment and 
income. 
 
 
2. Background 
 
FMSP Projects R.4517 and R.5050CB resulted in the production of two pc-based software 
packages, designed for use by fishery officers in developing countries when carrying out 
fishery stock assessments. These packages were first released in 1992. Both were developed 
for the then universally used MS-DOS operating system. 
 
The two packages, which do not require the user to have programming skills, were: 
 
CEDA -    Version 1.0.  Catch and Effort Data Analysis: A software package for analysing 

catch, effort and abundance index data.  The outputs included estimates of the 
maximum sustainable yield and replacement yield, current and unexploited 
biomasses, and other key population dynamics parameters. 

 
LFDA -  Version 3.0  Length Frequency Distribution Analysis: A software package for 

analysing length frequency data.  The outputs included estimates of growth 
parameters and mortality rates. 
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As a result of project R.4517, more than 50 copies of the software packages were distributed 
to scientists and scientific organisations in developing countries during the year after their first 
release.  Feedback from users of the original versions of the packages and experience gained 
during the adaptive project R.5050CB subsequently led to revisions of the software packages 
being made.  Revised versions (CEDA Version 2.01 and LFDA version 4.01), which still used 
MS-DOS, but incorporated a Windows-like menu system, were released in 1995.   
 
Takeup of the CEDA and LFDA packages has been reported annually in the FMSP annual 
report from 1993 to 1999.  As shown in the tables below, the takeup has grown steadily over 
that period, and more than 150 copies of the revised packages are now in use in developing 
countries worldwide. 
 
Table 2.1 Regional and Institutional Breakdown of CEDA and LFDA Dissemination in 

Developing Countries between 1993 and 1998       
 
     C. America/Caribbean       
        
 Institute Type  93 94 95 96 97 98     
        
 University  3 4 4 4 5 5 
 Fisheries Laboratory 5 7 8 8 15 15 
 Development Agency 0 1 1 1 2 2 
 Other   0 0 0 2 7 7 
              
 Total   8 12 13 15 29 29     
 
 
     South America      
            
 Institute Type  93 94 95 96 97 98 
       
 University  0 1 2 2 2 2 
 Fisheries Laboratory 3 4 6 6 7 7 
 Development Agency 1 1 1 1 2 2 
 Other   1 1 1 3 4 4     
       
 Total   5 7 10 12 15 15 
 
  
     Africa         
       
 Institute Type  93 94 95 96 97 98 
             
 University  2 2 3 4 4 4 
 Fisheries Laboratory 7 9 12 12 12 12 
 Development Agency 9 11 13 13 13 13 
 Other   0 0 0 2 2 2 
            
 Total   18 22 28 31 31 31 
 
     Bangladesh/India       
       
 Institute Type  93 94 95 96 97 98 
            
 University  3 5 9 10 10 10 
 Fisheries Laboratory 1 2 4 4 4 4 
 Development Agency 4 4 4 4 4 4 
 Other   3 3 3 3 3 3     
       
 Total   11 14 20 21 21 21 
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     Indian Ocean        
       
 Institute Type  93 94 95 96 97 98 
             
 University  0 0 0 1 1 1 
 Fisheries Laboratory 2 3 4 5 5 6 
 Development Agency 5 7 8 8 8 8 
 Other   0 0 0 0 0 0 
             
 Total   7 10 12 14 14 15 
 
 
     SE Asia         
       
 Institute Type  93 94 95 96 97 98     
       
 University  0 2 4 4 5 5 
 Fisheries Laboratory 4 7 8 8 8 8 
 Development Agency 5 7 8 9 9 9 
 Other   0 0 0 0 0 0 
             
 Total   9 16 20 21 22 22 
 
 
     Total      
           
 Institute Type  93 94 95 96 97 98 
           
 University  8 14 22 25 27 27 
 Fisheries Laboratory 22 32 42 43 51 52 
 Development Agency 24 31 35 36 38 38 
 Other   4 4 4 10 16 16 
           
 Total   58 81 103 114 132 133 
 
 
The much larger and still-expanding user community has led to a much greater demand on 
MRAG for advice and support in the everyday running of the software packages.  Until now, 
these requests have been handled on an ad hoc basis, but the continuing high level of 
demand for support requires that a more formal and efficient mechanism for support be 
developed.  It is also clear that there has been considerable secondary distribution of the 
software packages by those individuals to whom the software was originally sent by MRAG, 
but the full extent of this and the needs of these users are not well documented.  Part of this 
project will enable MRAG to enhance their World Wide Web (WWW) site to allow users to 
download copies of the software and manuals and to provide feedback to MRAG about its 
usage. This will enable us to build up a database of our users. 
 
In addition to requests for support, MRAG has also received considerable feedback from 
users of the software on desired amendments and extensions to the software.  Much of the 
more recent feedback has been on the desirability of Microsoft Windows versions of the 
software.  This would enable users to interface CEDA and LFDA more easily with the most 
common software packages in use such as spread sheets, word processors and databases.  
In addition, the more modern operating systems used even in developing countries have 
greater and greater difficulty in running old MS-DOS programs.  These needs are addressed 
by the main purpose of the project, which involves development, testing and dissemination of 
revised Windows-based versions of the two software packages. 
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3. Project Purpose 
 
Building on feedback already received from users, develop, test and distribute revised 
Windows-based versions of the CEDA and LFDA software.  Enhance the MRAG web site to 
allow remote downloading of programs and manuals for CEDA and LFDA, and as a 
mechanism for users to register their use of the software and to provide feedback to MRAG 
about the software. 
 
4. Research Activities 
 
The research activities consisted of redesigning the two software packages for a full Windows 
environment, programming them in object-oriented Microsoft Visual Basic, testing, 
incorporation of comprehensive on-line context-sensitive help systems and including detailed 
expository example analyses using the software packages.  The software will be 
disseminated through the newly-developed FMSP web site. 
 
 
5. Outputs 
 
The output from this project is the completed revised CEDA Version 3.0 and LFDA Version 
5.0 software packages, including the online help files and example analyses.  A CD 
containing the software packages is enclosed with this report.   
 
To illustrate the capabilities of the software packages and their use, the example analyses are 
reproduced in this section. 
 
5.1 LFDA Tutorial  
 
5.1.1 Introduction 
 
The object of this tutorial is to guide you through the analysis of an example set of length 
frequency data using LFDA version 5.  If you are new to LFDA, this will help you become 
familiar with the procedures necessary to use the package.  If you have used previous 
versions of LFDA, you will notice that there have been a number of changes to the user 
interface in version 5, so working through the tutorial will introduce you to most of these 
changes. 
 
We have deliberately chosen to use in the tutorial a simulated length frequency data set, with 
strong modes and fairly clear progressions between them.  This choice was made to give you 
confidence in using the package and a clear idea of how each of the methods work, but also 
in order to illustrate that even in the most favourable of circumstances, identifying the 'best' 
estimates of growth parameters or mortality rates from length frequency data is not 
straightforward.  You will see that the different methods of analysis can give different results, 
and you will be able to compare them with the ‘true’ values used to generate the simulated 
data.  No matter how good your data are -- and they are unlikely to be as good as the 
simulated data used here -- a degree of uncertainty will always remain in estimates of growth 
and mortality parameters based on length frequency data.   To obtain reliable estimates of 
parameters, there must be a pattern in the length frequency data, but this pattern is often not 
strong or clear.  In order to select the most appropriate single set of estimates (or alternative 
sets of estimates) from the results obtained using the LFDA package, you must use both 
common sense and judgement, and bring to bear any other relevant biological information 
you may have about the fish under study.  Do not believe a set of results just because they 
were produced by a computer!    
 
During the course of the tutorial, we will illustrate the use of most of the options available in 
LFDA, but not all of them.  A complete description of all the options available is contained in 
the Reference section of the Help files.  
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5.1.2 Loading and inspecting data 
 
There are a number of different ways to load data into LFDA, and these are described in 
detail in the reference section of this manual.  The most common way of loading data is to 
import it from an ASCII text file.  You can create ASCII files using an ordinary text editor or 
you can export them from a spreadsheet, database or word processor.  The data which we 
are going to use for the tutorial has been saved in the ASCII file TUTOR.TXT.  You can view 
any ASCII file using the a text viewer such as Notepad.  If you open the file TUTOR.txt in 
Notepad, the first few lines should look like the table below: 
 
Simulated Tutorial Dataset 
 
               0.0      0.2      0.4      0.6      0.8      1.0      1.2      1.4      1.6      1.8 
 20.0   215.0      0.0      0.0      0.0      0.0   241.0      0.0     0.0      0.0      0.0 
 25.0   128.0      0.0      0.0      0.0      0.0   113.0      0.0     0.0      0.0      0.0 
 30.0     71.0      1.0      0.0      0.0      0.0     72.0      3.0      0.0      0.0      0.0 
 35.0     30.0      9.0      0.0      0.0      0.0     20.0      7.0      0.0      0.0      0.0 
 40.0       6.0    19.0      1.0      0.0      0.0       7.0    20.0      4.0      0.0      0.0 
 45.0       4.0    30.0      3.0      4.0      0.0       4.0    39.0      7.0      3.0      0.0 
 50.0       0.0    56.0      7.0      3.0      0.0       0.0    72.0      6.0      2.0      0.0 
 55.0 ... 
 
The first line of such a file contains a description of the dataset, and it will be used by LFDA 
as a title for this set.  The second contains the sample timings, that is, the relative times at 
which the samples were taken.  Often, you will have stored this information in the form of a 
date (e.g. 24th January 1990).  In the LFDA package, we have assumed that the primary unit 
of time is a year, and the package needs to know how many years or fractions of a year have 
elapsed between a nominal starting date and the time at which the length frequency 
distribution was taken.  Thus, suppose you started collecting length frequencies in 1990.  1st 
January 1990 is a sensible date from which to measure, so if your first distribution was taken 
on 24th January 1990, then the sample timing for that sample is 24/365 = 0.066.  If the next 
distribution was taken on 3rd March, then the sample timing for that distribution would be 
(31+28+3)/365 = 0.170.  The sample timing on 3rd March of the following year would be 
1.170.  Parameters like t0 are estimated relative to the 0 sample time, i.e.1st January 1990. 
 
The rest of the rows in the file have the same format.  The first number in the row is the length 
class, and the rest of the entries in the row are the numbers of fish in that length class in each 
of the samples.  The result is that the sample length distributions form the columns of the 
table, with the first column being the length classes.  Length class intervals must all be of the 
same size. 
 
You can import your own data into LFDA provided it is in an ASCII file in the same format as 
this example file (you can have more columns or rows, though).  Word processors and 
spreadsheets can all save or export data into ASCII format, so if you have entered your data 
using such a package, look in its documentation to see how to do this. 
 
Now that you have looked at the tutorial data, we will import it into LFDA. Select the file menu 
File | Open.  A dialog box will appear on the screen, listing the names of all the *.lf5  files in 
the current directory. Use the pull down list to change the shown file types to files of type Text 
(*.txt).   Select TUTOR from the list of text files.  
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Figure 5.1.1 Main Application window showing imported dataset. 
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The data set TUTOR will then be imported into LFDA and you will be asked to provide a 
filename for the newly imported dataset. We suggest that you enter the filename Tutor. The 
newly imported dataset will then be saved as an LFDA file with the extension *.LF5. The main 
data sheet window should now appear as shown above in Figure 5.1.1 
 
If you now move to the Data menu, you will see a number of options for viewing the data.  
These options are discussed in detail in the Reference section.  For the moment, we will just 
plot the data as length-frequency histograms by selecting Data | Plot Data. 
 
The plot should look like Figure 5.1.2 below.  Examine these histograms carefully as, in the 
absence of other information, they will provide the primary clues for a first guess at possible 
ranges for growth curve parameters that you will need in the next section.  In particular, the 
upper ends of the histograms should give you some idea of possible values for L. 
 

 
 
Figure 5.1.2   Sample Length Frequency Histograms 
 
 
5.1.3 Estimation of non-seasonal growth parameters 
 
You are now ready to estimate some growth parameters. The LFDA package allows you to 
choose between three different growth functions that you can try to fit to your data: the von 
Bertalanffy, Hoenig and Pauly functions.  The von Bertalanffy model is the simplest, requiring 
three parameters to be estimated.  The latter two models make allowance for seasonal 
growth and so require two more parameters and therefore better data.  Whichever function 
you choose, there are alternative methods for estimating which parameters will provide the 
best fit to your data.  The three methods in LFDA are: Shepherd's Length Composition 
Analysis (SLCA); the Projection Matrix Method (PROJMAT); and a version of the Electronic 
LEngth Frequency ANalysis method (ELEFAN).  
We will look at a number of combinations of model and method in the course of this tutorial.  
This is not only to illustrate the different procedures, but also to demonstrate the way you 
should work in analysing your own data.  Each method has its strengths and weaknesses, 
and different data sets will respond best to different methods.  For this reason it is sensible to 
try all methods and all suitable models on your data.  If you can get agreement between the 
methods, it will give you that much more confidence in the accuracy of your parameter 
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estimates.  For a detailed discussion of the methods and models please refer to the Help file 
sections on Estimating Growth Parameters, and the Technical Appendix. 
 
If you have read the chapters on Estimating Growth Parameters, you will find the tutorial 
much easier to follow.  However, for those who are impatient to continue, some of the most 
important concepts are repeated here.  But you must be very familiar with the contents of 
that section before you try to use LFDA on your own data. 
 
A score function in LFDA is something that takes a model (e.g. von Bertalanffy) with its 
specific parameters (e.g. values for K and L∞), then looks at your data and gives you a 
number which tells you how likely it is that your data comes from a stock with that growth 
function.  You calculate the score function for lots of different parameters, and the higher the 
score function, the more likely it is that your stock’s growth follows that growth model with 
those parameters.  The three methods, SLCA, PROJMAT and ELEFAN, all have different 
score functions. 
 
The basic idea behind estimating the growth parameters is to find the combination of 
parameters that maximises a specified score function.  Although the score functions for the 
three methods are different, they all, in some way, measure the goodness of fit between the 
observed length frequencies and those that would be expected if growth followed the 
specified model and parameters.  However, it is not easy to find that combination of 
parameters that gives the maximum score function. To get started, we calculate the value of 
the score function over a specified grid of values of K and L∞.  Then we can see in which 
portion of the grid the maximum score function lies, and specify a new, finer grid covering only 
that area.  Once we have narrowed down the possible ranges of K and L∞, we can use 
LFDA’s built-in automatic maximisation to determine the values of K and L∞ at which the score 
function is maximised. 
 

5.1.3.1 Shepherd’s Length Composition Analysis (SLCA) 
 

Shepherd's method compares each observed length-frequency distribution with a length 
frequency distribution that would be expected for given values of the von Bertalanffy growth 
parameters L∞ and K.  A goodness-of-fit score is then calculated using a certain test function 
(Shepherd, 1987; see also Technical Appendix). Large, positive score values indicate that the 
expected length-frequency distribution matches well with the observed data.  The best 
estimates of K and L∞ are those that correspond with a maximum value of the score function.  
SLCA is only applicable to the von Bertalanffy growth model because it does not handle 
seasonal growth. 
 
As we discussed in the previous section, the first step is to define a grid over which the score 
function must be calculated.  The different estimation methods have different score functions, 
so at this stage we also have to choose the model and method to use.  Select the Fit | Score 
Function Grid menu and you should see the Grid Evaluation dialogue box as shown in 
Figure 5.1.3 
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Figure 5.1.3 Grid Evaluation Dialogue Box 
 
In the top left selection of options you can specify whether to use the SLCA, PROJMAT or 
ELEFAN method.  SLCA is probably the one currently selected.  If not, click on the circle or 
use the cursor keys to move the highlight and dot between the three methods.  Next we will 
specify a growth model. The Hoenig and Pauly models are for stocks with seasonal growth 
which cannot be estimated using SLCA.  We therefore can only use the von Bertalanffy 
model, so select this option as before. 
 
The shape of the von Bertalanffy curve can be completely specified by the two parameters K 
and L∞, since tO can be estimated from them.  The Hoenig and Pauly models have four 
independent parameters to be estimated, so it is not possible to display a grid of all 
parameters on the screen.  If you were using these models you would therefore have to 
specify which parameters you would like to vary over the grid, while the other parameters 
would remain fixed at values you had chosen.  This is the purpose of the third option group, 
but since we are using a von Bertalanffy model, K vs L∞  is the only appropriate option and 
should remain selected.  When you are satisfied select the  Define Grid button to display the 
Grid Options dialog box shown below in Figure 5.1.4. 
 

 
Figure 5.1.4 Grid Options Dialog Box 
 
The Grid Options dialog box asks you to specify the rectangular grid of values by giving the 
smallest and largest values of K and L∞ that you think might possibly be consistent with the 
data, and the number of values (evaluations) in between that should be calculated.  
Experience with estimating growth parameters suggests that it is wise at first to choose as big 
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a grid as possible when starting the estimation process.  Recalling the histograms of the 
length frequencies that we plotted earlier, it would seem reasonable that the lowest possible 
value for L∞ is 150.  (Remember, the von Bertalanffy parameter L∞ here measures the 
average maximum length in a population of fish, not the length of the biggest fish of the lot).  
Picking an upper value is less easy, so let us try 250, which ought to be big enough.  Picking 
a range for K is also not easy.  A trial of say 0.1 to 1.5 might be a sensible first guess.  Note 
that it is very simple and quick to return to this calculation again and again to hone down your 
ranges. Finally, you are asked for the number of evaluations for each range of K and L∞.  A 
sensible first number would be 15 for K and 11 for L∞.  To be absolutely clear, if you ask for 
11 evaluations using L∞ between 150 and 250, the package will evaluate at L∞ = 150, 160, 
170, 180, 190, 200, 210, 220, 230, 240 and 250.  Combined with 15 evaluations for K, that 
makes 15x11=165 evaluations in all. 
 
So now fill the grid evaluation information into the dialog box in the appropriate spaces.   
When you have finished the dialog box should look like figure 5.1.4 above. Now click OK or 
press Enter to accept the grid options. Now, if you press the OK button on the Grid 
Evaluations dialog box LFDA will immediately start calculating the SLCA score function 
values for each point on the grid, displaying a progress bar with an estimate of time 
remaining. Time should not be a problem for SLCA, but it may be for some of the other 
methods if you have a slower machine.  
 
When the calculations are finished LFDA presents the Parameter Estimates window, which 
gives the details of, the grid calculated and the best parameter estimates obtained using the 
grid.  The best score is obtained for K=0.7 and L∞ =220, with t0=-0.163.  Notice the lines on 
the panel saying ‘Fixed Parameters : None’ and ‘No maximisation performed’.  These will 
change later as we start using other features of LFDA.  This window can be retrieved later, if 
you wish, by selecting Fit | View Parameter Estimates.  
 
LFDA can plot your length frequency data together with the von Bertalanffy curve using the 
parameters estimated at the grid point with the highest score..  In this case, this was for K=0.7 
and L∞ =220. If you select the menu item Plot | Growth Curve  from the Parameter Estimates 
window you should see a plot like the one shown in Figure 5.1.5 .  The title of the plot 
contains the curve’s parameters, including the corresponding t0, -0.163.  (On screen, t0 is 
sometimes referred to as tz or Tzero). Eventually, we hope the growth curve will fit the 
histograms well, passing through the middle of the bases of the modes.  We have only just 
started, however, so we cannot expect too much of the fit at this stage.  If you wish, you can 
redraw this plot later by selecting Data | Plot Fit from the main application window menu and 
accepting the latest ‘best’ parameters which will have been automatically entered into the 
dialog box. 
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Figure 5.1.5  Plot of Length Frequencies with fitted von Bertalanffy growth curve 
 
To view the grid evaluations calculated by LFDA you should now return to the Parameter 
Estimates window and select the Grid Data | View menu item.  A new window with the 
caption "Grid Search Data" will appear which contains a grid of the values of the score 
function for each grid point.  The maximum score function, 374.982, is highlighted in red, 
while the minimum is in blue.  Check that the maximum is at K=0.7 and L∞ =220, and look at 
the score functions values around this point.  Note that these estimates are extremely unlikely 
to be good, since we were evaluating a fairly coarse grid.  We are only seeing the best of the 
165 K and L∞ combinations considered so far.  This first step is just to get a general idea of 
where to search further. 
 
 If you try to scan through this table, you will rapidly discover that it is difficult to take it all in.  
This is normal.  To help interpret the table, LFDA can produce a two dimensional contour plot.  
This is rather like a weather or a topographic map on which it is easy to identify high and low 
regions. Return to the Parameter Estimates window and select the menu item Plot | Grid 
Data and a contour plot similar to that shown in Figure 5.1.6 will now appear on the screen. 
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Fig 5.1.6 Contour Plot of Score Functions 
 
On this contour plot, the dark areas represent low values of the score function and the light 
areas represent high values.  So we are seeking to identify values of K and L∞ that 
correspond to the lightest areas.  The white region in the contour spreads in a broad curve 
across the centre of the screen, corresponding, as expected, to a wide (but inversely 
correlated) range of K and L∞.   
 
The contour plot works by assigning a colour to those grid points with score function values 
within a given range, and the contours are drawn by interpolating between the calculated grid 
points.  Initially, the score ranges corresponding to each colour are quite wide, but it is also 
possible to concentrate only on the high score function values and allocate colours to smaller 
ranges.  This gives a more detailed contour plot and is accessed using the right hand mouse 
button.  If you press the right hand mouse button down over the contour plot, you will see that 
the white area narrows, and recedes from the bottom right hand corner.  Pressing the right 
hand mouse button again narrows the white range still further.  You should not do this more 
than once or twice for this size grid, or you will start seeing detail that is not really there, but is 
just an artifact caused by the coarseness of the grid calculation that we did.  If you repeat this 
again, the white area will break up into patches about the size of the grid, i.e.10cm in L∞ and 
0.1 in K.  This is completely artificial and does not tell you anything about your data, so you 
must be careful to watch out for this effect.  Close down the contour plot and redraw it at the 
original level of detail by selecting the menu item Plot | Grid Data, and press the right hand 
mouse button down twice to magnify it again. 
 
We do seem to have been too conservative in the range specified for K.  From this contour 
plot, it would seem that a better range would be 0.5 to 1.2.  It also suggests that the estimate 
L∞ will be higher than 180 cm.  The white area runs off the screen as if L∞ could be higher 
than 250 cm, but with the length frequency histograms showing a maximum length around 
190 cm, it is unlikely that L∞ can be so high.  (Of course for a heavily exploited stock this 
would not necessarily be true, so you must use your knowledge of the biology of the stock to 
make such decisions).  We will keep an eye on this, however, so that if we detect maxima 
near to such large values then we can extend the range of L∞’s in our grid search upwards. 
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Let us now calculate a new score function grid, using the revised ranges for K and L∞.  Firstly 
close down all windows which remain open except for the main application window.  Now 
select the menu item Fit | Score Function Grid to define a new grid.  The Grid Evaluation 
dialog box will reappear specifying the model and method to be used.  Make sure that the 
options selected are still Method = SLCA, Growth Curve = Non Seasonal and Grid Type = K 
vs L∞. Press the Define Grid button to show the Grid Options dialog box. Here you should fill 
in the new values: K from 0.5 to 1.2 with 15 steps and L∞ from 180 to 250 also with 15 steps.  
Press OK to close this dialog box and then press OK on the Grid Evaluation dialog box to 
perform the grid search.. 
 
As an aside, you may wonder why we are using odd numbers of steps like 11 and 15.  There 
is no real need for it, but it is good practice to have grid evaluations take place on round 
values of K and L∞.  It doesn’t matter mathematically, but a grid maximum at a value of L∞ like 
183.734 can give you a false sense of accuracy.  If you wish to divide a range into 10 portions 
you must evaluate 10+1=11 grid points.   
 

The new grid evaluation still gives the maximum score function at K=0.7 and L∞ =220.  Select 
the item menu Plot | Grid Data in the Parameter Estimates window to draw the new contour 
plot shown in Figure 5.1.7. 
 

 
Figure 5.1.7 New Contour Plot Redrawn from New Grid Evaluations 
 
We seem to have picked the right range this time.  The plot indicates a band of high score 
function values running from the bottom right of the plot to the top left. These slightly banana-
shaped contours are typical of what you will see for almost every data set, and they reflect the 
high negative correlation between the estimates of K and L∞.  You should always seek to 
generate contour plots with this shape. 
 
As the contour plot appears now, it seems difficult to narrow down the range of values of K 
and L∞ which may correspond to a maximum.  Once again, we need more detail; even more 
so because we have a narrower range of values around the maximum.  Press the right hand 
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mouse button down over the contour plot three times.  A new plot will be shown as in Figure 
5.1.8. 
 

 
Figure 5.1.8 A Further Contour Plot Showing More Detail 
 

You could continue the process of restricting the ranges of K and L∞ recalculating a table of 
score functions, and contouring and focusing until you finally identify the maximum, but that is 
not necessary.  Instead, a procedure that attempts to find the maximum automatically is 
included in the LFDA package. 
 
To invoke the maximisation procedure, return to the Parameter Estimates window (but do not 
close down the contour plot as this will return it to the default level of detail) and press the 
maximise button. This will bring up the Maximisation Options dialog box in which you are 
given a choice of using the 'current grid range' for the search or 'manually defining the search 
boundaries'. The 'current grid range' refers to the grid you defined last, and means that the 
maximisation routine would only look for the maximum score function within that range.  For 
now you should select the 'current grid range option'.  Below the grid range option is a check 
box which allows you to specify if you wish to view the maximisation process.  You should 
usually make sure this box is checked as viewing the maximisation is useful.  It will also help 
in explaining what the maximisation is doing, so you should make sure this option is checked 
for the purposes of the tutorial. 
 
What happens next is that a progress bar appears and a lot of light blue lines are drawn all 
over the contour plot (Figure 5.1.9).  What you are seeing is the maximisation routine 
searching for the point where the score function is a maximum.  As a matter of fact, you are 
seeing five maximisation processes.  Each maximisation run will generally find at least a local 
maximum, but the only way to be sure that you have found the global maximum is to start the 
maximisation process at different points within the grid range and then see if they all converge 
to the same maximum or, if not, which of the local maxima is the largest (refer to the 
Technical Appendix  for more information).  The starting point of each maximisation is marked 
with a yellow oval, except for the last one which starts in the middle of the search area.  The 
path that the maximiser follows is drawn in light blue, and it stops once it has found a 
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maximum which is marked with a black rectangle. Once the last maximisation is complete, the 
biggest of the maxima is marked with a red rectangle. 
 

 
Figure 5.1.9 Contour plot redrawn showing steps leading to maximisation  
 
In this case, you may have noticed that some of the lines converged to the point marked in 
red, but some stopped at a point slightly to the right and down.  This latter must be a local 
maximum, but its score function value was still not as high as the other one and the 
parameter estimates are fairly similar.  It is clear from the light blue lines that the maximisation 
routine searched over the whole white area, so it is reasonable to assume that the maximum 
it found was the true maximum for this method. 
 
It is important to remember that this maximum represents the growth parameters that give the 
best fit of the von Bertalanffy growth curve to your data, using the SLCA score function as 
measure of ‘goodness of fit’.  How good is this fit really? To see the fit select the Plot | 
Growth Curve menu item from the Parameter Estimates window menu. LFDA will show the 
histogram plot of this growth curve superimposed upon the original length frequency data 
(Figure 5.1.10).  As you can see, this fit is far from perfect.  It will be interesting to see if any 
of the other methods can do better. 
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Figure 5.1.10   von Bertalanffy Growth curve fitted using SLCA score function  
 
Returning our attention now to the Parameter Estimates window, the results panels look much 
as it did before, but this time there are maximisation results listed in the bottom panel : 
K=0.666, L∞ =225.63 and t0=-0.173. 
   
A word of caution here: LFDA gives you quite a few decimal places to these parameters.  This 
is to help you if the units of your data are not optimal, for instance if you are working in metres 
where centimetres would have been more appropriate.  For data like these in the tutorial, this 
level of precision is not sensible, because you cannot hope that the results you get will be 
accurate to within 0.0005%!  We will count ourselves lucky if we can get within 10% of the 
‘right answers’ in this tutorial.  Remember, a precise answer is not necessarily an accurate 
one. 
 
LFDA keeps a copy of all the Parameter Estimate panels that you create during a session, 
and you can view this log at any stage to remind yourself what you have done.  Let us look at 
it now.  Close the plot of the growth curve if you wish to keep the desktop tidy and select the 
Options | Log File menu item from the main application window. You will see the Log 
window containing an ASCII text file (Figure 5.1.11). 
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Figure 5.1.12  View of the ASCII text Logfile 
 
You can scroll up and down in this file, and besides a heading you should see the results of 
your two grid searches and the maximisation.  When you leave LFDA you will be given the 
option of saving this Logfile. Note, you can save it at any time by using the File | Save As 
menu item in the Log window.  Before moving on you must close the Log window. 
 
The only other thing you might wish to do at this stage is to see what the parameters of the 
fitted growth curve indicate the age composition of your length frequencies might be.  A 
means of doing this is included in the Functions menu. The method used is the so-called "age 
slice" method.  As indicated in the Technical Appendix, this uses the growth curve to 
delineate the boundaries between lengths at age 0, 1, 2, etc., and then "slices" the length 
frequencies at those boundaries.  Remember that because t0 is arbitrarily forced to lie 
between -1.0 and 0.0, the nominal ages might not be the true ages.  Selecting the menu item 
Functions | Age Slice brings up a dialog box asking for growth parameters. Pressing the 
Calculate button will display a similar window to that we saw earlier for viewing the grid data. 
This window, with the caption "Age Slice Distributions" contains a table of estimates of 
numbers at age. From within this window you can save, print or copy the data to the windows 
clipboard using the appropriate icons on the tool bar. In order to plot the data you must return 
to the Age Slice Distributions dialog box and press the Plot button to produce Figure 5.1.12 
below. 
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Figure 5.1.12   Age Slicing the length frequency data for each sample time  
 
The next step is to see what parameters the other methods will estimate for the von 
Bertalanffy growth model. First close down all windows except the main application window 
and we will now move on to the Projection Matrix Method. 
 

5.1.3.2 Projection Matrix Method (PROJMAT) 
 
As explained elsewhere in the online help and in the Technical Appendix, the principles 
behind the projection matrix method for estimating growth curves are rather different from the 
other two methods, which rely more explicitly in fitting curves through modes.  In the 
projection matrix method, successive pairs of length frequency distributions are compared.  
The basic idea is to successively project one observed length frequency distribution forward 
in time, based on an assumed set of growth curve parameters, to obtain a prediction of what 
that length frequency distribution should have looked like at the time the second observed 
length frequency was collected.  The goodness of fit of the observed and predicted 
distributions are then compared.  The best estimates of the growth parameters are those that 
lead to the best fit between the observed and predicted distributions. 
 
Because the projection matrix method starts with an observed length frequency distribution 
and projects it forward over a given time interval, the method provides no information 
whatsoever on the parameter t0.  This is the same thing that happens when you estimate 
growth parameters from tag-recapture experiments. However, in anticipation that you will 
normally also want an estimate of t0, we have provided estimates of that parameter for each 
pair of L∞ and K values.  These are calculated using the method incorporated in SLCA. 
 
The mechanics of a PROJMAT analysis are pretty much the same as for SLCA.  Let us start 
by seeing what PROJMAT makes of the grid we gave SLCA to start with: K from 0.1 to 1.5 in 
15 steps and L∞ from 150 to 250 in 11 steps. Select the menu item Fit | Score Function Grid 
to show the Grid Evaluation dialog box and this time change the method to PROJMAT.  
Leave the growth curve as it is, set to Non Seasonal. Now press the Define Grid Button and 
enter in the above grid specifications into the Grid Options dialog box. Select OK on the Grid 
Options dialog box and the Grid Evaluation dialog box to start computing the evaluations. 
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You will notice that the PROJMAT grid takes longer to calculate than the SLCA did.  This is 
normal - in fact ELEFAN will probably take even longer.  It is worth bearing this in mind if you 
are tempted to try large numbers of grid points. 
 

The maximum value of the score function turns out to be -0.183 at K=1.30 and L∞ =160.00, 
with a corresponding SLCA-calculated t0 = -0.081.  PROJMAT score functions are all 
negative, so the theoretical maximum score (for a perfect fit) would be zero. 
 

Now draw the contour plot of this grid of values of K and L∞  (Plot | Grid Data).  A bit more 
detail would be useful here.  Pressing the right hand mouse button once over the grid will 
display the contour plot illustrated in Figure 5.1.13. 
 

 
Figure 5.1.13  Contour Plot  for PROJMAT score function 
 
An immediately noticeable feature of this plot is that we have a number of disjointed regions 
where the maximum could be.  We may need to adapt our search strategy to examine each of 
these regions in turn.  As a first step, though, it seems clear that our grid included K’s that 
were too low - a bottom limit of 0.7 would be more reasonable.  It does seem as if higher K’s 
and L∞’s might be possible, although, as before, an L∞ below 150 seems unlikely.  We will 
neglect these combinations unless we find that the score function maxima come close to this 
edge. 
 
Let us quickly recalculate the grid, but with K from 0.7 to 1.5 in 17 steps.  You will see that the 
maximum score function this time is at L∞ =150, which is on the edge of our grid.  This means 
that our grid is not large enough - the maximum we are looking for may well be off the screen.  
Accordingly, we had better enlarge the grid to cover K from 0.7 to 1.7 in 21 steps and L∞ from 
130 to 250 in 13 steps. The maximum is still at L∞ =150 and K=1.45, but at least this time we 
know that it is not at any lower values of L∞.  If you redraw the contour plot and magnify it 
once, you will see that the white area is far more fragmented than it was for SLCA.  Our grid 
seems to be well defined, though, so we can now see what the automatic maximisation finds. 



 

 
 
MRAG CEDA and LFDA enhancement 20 

Do not close down the contour plot window and perform a maximisation with the view 
maximisation option checked to see the plot below (Figure 5.1.14). 
 

 
Figure 5.1.14  Contour Plot With Maximisation for PROJMAT 
 
The white area in the contour plot can be seen as two banana shaped strips lying one above 
the other.  The maximiser has found three local maxima in the uppermost strip, but only 
seems to have tested the lower strip at the top left and bottom right extremes (corner points of 
the red lines are where the score function has been tested).  There may be another maximum 
here that has escaped notice, so we will have to focus on this area separately.  First, we must 
make a note of the maxima that have been found.  The global maximum (the pink rectangle) 
was the score function value -0.176 at K=1.298, L∞ =162.997 and t0=-0.066.  The other 
maxima  were found at  around K=1.22 and L∞ =170 and K = 1.42 and L∞ =154.  It is useful to 
note these secondary maxima because they may coincide with maxima found using the other 
methods.  As it is, these parameter estimates are rather far from the values estimated by 
SLCA. 
 
The next step is to check for potential maxima in the lower of the two white strips. Close down 
the contour plot and return to the Parameter Estimates window. We need a new contour plot 
at the correct level of detail for the maximisation process. Therefore, produce a plot of the 
contour data and right click on it once to produce the same level of detail we had before. We 
will now proceed with maximising over the lower of the two white strips. Press the 
Maximisation button.  This time, select the 'Manually define search boundaries' option. Text 
boxes for entering the new ranges will become enabled.  Type in the new ranges K from 0.9 
to 1.1 and L∞ from 150 to 190.  Make sure the 'View Maximisation' option is checked and 
press OK to maxise.  You will now see a set of five maximisations on the contour plot, but this 
time they are confined to the area we specified.  The score function is maximised at K=0.974, 
L∞ =178.79 and t0=-0.14 with a score function value of -0.192.  This score function value is 
quite a bit lower than the ones we found earlier, so the other, earlier estimates are still the 
best ones obtained with the PROJMAT method.  Before we pronounce this finally, though, it is 
worth comparing the model fits obtained with these two sets of parameters.  Remove the 
contour plot and from the main application window select Data | Plot Fit which will plot the 
growth curve using the parameters from the last maximisation we did. The graph window has 
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a series of menu items for printing the graph page, copying it to the windows clipboard or 
saving it in Windows metafile format.  You should print this plot now by selecting File | Print 
Current Page from the graph window. 
 

 
Fig 5.1.15 a Fitted growth curve for first set of PROJMAT estimates 
  

 
Fig 5.1.15 b Fitted growth curve for second set of PROJMAT estimates 
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Next, repeat the above plotting process, filling in the best parameters we found earlier, that is 
K=1.298, L∞ =162.997 and t0 =  -0.066.  Print this plot as well to compare the two fits (Figure 
5.1.15 a and b).  This is important because sometimes PROJMAT can make a mistake and 
miss out a complete cohort.  If something this drastic is happening you will see it clearly on 
the Data | Plot Fit.  In this case there is no obvious problem of that sort.  The fits seem quite 
similar for low ages and although they are different nearer the asymptote it is clear that they 
are aiming at different peaks within the higher length class data.  There is no way of choosing 
one above the other as yet. 
 
As a final check, let us look for a maximum specifically in the region where SLCA produced its 
best estimates.  Repeat the maximisation process but use the search range K from 0.7 to 1.1 
and L∞ from 190 to 250.  You will see that all the maxima are on the boundary of the region at 
L∞ =190.  This means that in searching for the maximum the program kept running into this 
edge and then being forced to stop.  This is a clear indication that the maximum lies outside 
this region.  Remember that the score functions of SLCA and PROJMAT are quite different, 
so the fact that they have produced such different parameter estimates is unfortunate but not 
a contradiction. 
 

5.1.3.3 ELEFAN Method 
 
The third method for estimating von Bertalanffy growth parameters included in the LFDA 
package is based on the ELEFAN 1 method devised by Dr Daniel Pauly and reviewed in 
Pauly (1987).  It works by first restructuring the length frequency data in a way that 
emphasises the peaks and troughs in the data, and calculates a score function as a function 
of the proportion of available peaks and troughs that can be explained by a von Bertalanffy 
growth curve with specified parameters.  See the Technical Appendix for more detail of the 
method and the modifications included in the LFDA package. 
 
To start the process, first calculate the values of the ELEFAN score function (remember to 
change the model to ELEFAN) for the now familiar initial range K=0.1 - 1.5 step 15 and 
L∞=150 - 250 step 11.  ELEFAN starts calculating very slowly, but speeds up as it proceeds.  
You should find that the maximum amongst the grid of values calculated is 0.453, and it is 
found where K=0.5, L∞  =200 and t0 = -0.65.  This time, though, the plot of the fitted von 
Bertalanffy curve looks quite different because it is superimposed on the “restructured length 
frequency data” rather than the original data.  You should see a plot similar to Figure 5.1.16 
 
The process of restructuring is specified fully in the Reference and Operating guide, while 
ELEFAN is also described in the Technical Appendix.  Basically, the restructuring emphasises 
the modes in the data, and the solid histograms in the restructured plot represent the clearest 
peaks in the original data.  You will see groups of solid red bars separated by white ones, 
where each group of solid red bars represents a cohort (Figure 5.1.16). 
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Figure 5.1.16  von Bertalanffy Growth Curve Fitted By ELEFAN  
 
ELEFAN will try to fit a growth curve through the base of the highest one of the solid bars in 
each group.  As you can see, it is not doing too badly, although there is plenty of scope for 
improvement.  You can redraw this plot at any later time by selecting Fit | Plot Restructured 
Data on the main application window.  You can also see an ELEFAN fit plotted in the 
conventional way by selecting Data | Plot Fit. 
 
Now generate a contour plot.  After one click on the right hand mouse button to focus, the plot 
will look like Figure 5.1.17. 

 
Figure 5.1.17  Contour Plot for ELEFAN score function showing the three regions to be 

examined separately 
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You will notice that the total white area seems smaller than was the case with the other two 
methods.  The stronger the modes in your data, the more this will be the case when using 
ELEFAN.  We will be able to narrow down our ranges considerably, but given how 
fragmented the white areas are, we may need to examine a few of the regions separately.  
The major white areas fall within three main regions which are marked in Figure 5.1.17. 
These regions are small enough that we can try to run the maximiser bounded to each of 
these regions in turn. The bounds of the regions are given below: 
 

Region  K Bounds L∞ Bounds 
1 0.37 - 0.72  173 - 220 
2 0.73 - 1.02 170 - 188 
3 0.27 - 0.35 235 - 245 

 
First, let us search for the maximum over the whole grid.  If you do this you will see that the 
two lower areas of white are searched quite thoroughly and the maximum is where the search 
function equals 0.466, at K=0.841, L∞=180.51 and t0=-0.16.  The results of searching in all 
three regions separately are shown in the table below: 
 

Region   Score K L∞ T0 
1 0.469 0.502 198.264 -0.670 
2 0.466 0.841 180.51 -0.160 
3 0.405 0.297 241.000 -0.120 

 
The score function for the third region is much lower than the other two, with parameters 
different to anything else obtained so far, so we need not consider this point further. Let us 
have another look at the maxima from the first and second regions.  The score functions are 
very close to each other, but the estimated parameters are quite different.  We need to look at 
the fit plots to understand what is happening here.  Use Data | Plot Fit to plot the fits 
corresponding to the two sets of parameters, and print both plots so that you can compare 
them.  They should look like Figure 5.1.18 a and b below, and as you can see, the fitted lines 
are quite different. 

 
 
Figure 5.1.18 a Growth Curve using parameters estimated from Region 1 
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Figure 5.1.18b Growth Curve using parameters estimated from Region 2 
  
What seems to be happening is that the K=0.502 (Figure 5.1.18, Plot a) curve manages to fit 
the end-of-year data fairly well, but is bad early in the year and gives up totally on the first 
mode.  The K=0.841 (Figure 5.1.18, Plot b) option is good early and late in the year but 
misses completely in the middle.  If you were to look again at PROJMAT’s best estimate at 
K=1.3, you would see a similar pattern.  It is as if the data can fit the von Bertalanffy curve in 
places, but not everywhere.  More importantly, it misses the curve consistently across cohorts 
at particular times of the year.  This suggests that the stock may be displaying a seasonal 
growth pattern.  We will examine this possibility in the next section, Estimation of Seasonal 
Growth Parameters.. 
 
 
5.1.4 Estimation of seasonal growth parameters 
 
In the previous section we completed a thorough attempt to fit a von Bertalanffy growth model 
to our data.  Normally, one would hope to find reasonable correlation between the parameter 
estimates provided by the different methods.  In this case, however, we suspect that the stock 
may be growing faster at different times of the year.  This sort of growth is described by the 
Hoenig and Pauly functions.  Pauly’s model is specifically geared for species that stop 
growing completely at certain times of the year, like Atlantic salmon.  This is a more 
specialised model, and we have no reason to suspect that our stock may be behaving in this 
way.  So, our first attempt will be to fit the more general Hoenig function.  It is important to 
remember that one should have good biological reasons for trying a seasonal growth curve.  
Just getting a better score function with one is not good enough.  Most datasets will give you 
a better score function with a Hoenig model than a von Bertalanffy, simply because the extra 
parameters can explain away some of the random variation in the data.  
 
It will be useful to have a summary of the von Bertalanffy parameter estimates obtained so 
far, to give us some idea of where to start looking (see below). Unfortunately, these do seem 
to cover a wide range, but we think we know why this is happening and we hope to do better 
once we fit a more realistic model. 
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Estimation Method L∞ K t zero Score   Function 

SLCA 225.63 0.666 -0.173 375.081 
PROJMAT 162.977 1.298 -0.08 -0.176 
ELEFAN 198.264 

        180.51 
       0.502 
       0.841 

  -0.670 
          -0.160 

      0.469 
            0.466 

 
 
5.1.4.1 PROJMAT/Hoenig 

 
We will start with the PROJMAT method, making use of the maxima that we have found so 
far. Select Fit | Score Function Grid to define a new grid, but this time select the PROJMAT 
method, the Hoenig model, and choose the grid type C vs Ts.  We will need to estimate C and 
Ts as well as K and L∞, and we do this a pair at a time.  In the Grid Options Dialog Box we 
must specify the grid for C and Ts.  C always takes a value between 0 and 1, and Ts must lie 
between -0.5 and 0.5.  These are therefore the default grid boundaries and you can usually 
just accept these. You must also specify values for K and L∞  ; - these are fixed values and will 
remain constant while we are estimating C and Ts.  Enter the best estimates for the von 
Bertalanffy curve that we arrived at using PROJMAT, i.e. K=1.298 and L∞  =162.977.  Press 
OK to accept these values and OK once more to start calculating the C vs Ts grid. 
 
As before, the best grid point will be identified, and this time it is at C=0.71 and Ts=0.  The 
score function is -0.110, which is already much better than the previous PROJMAT best at -
0.176.  (Remember that the maximum value of a negative score function is the one with the 
smallest absolute value).  The plot of the fit gives you your first glimpse of a seasonal model 
at work.  The contour plot for this grid looks quite different (Figure 5.1.19).  The next step is to 
maximise the function as before, by pressing the maximise button.  It can help, for these 
grids, to use smaller boundaries for the maximisation, because the program can sometimes 
be distracted by spurious local maxima on the borders.  It is easy to see from the contour plot 
where the boundaries can safely be drawn.  Try 0.1<C<0.9 and -0.2<Ts<0.2.  Once you have 
found the maximum, you will see that there has been a further improvement in the score 
function, now at -0.097. This corresponds to the parameters C=0.505 and Ts=-0.018.  If you 
confine the maximisation to the right half of the above area, you will see that the maximum 
there is lower than this one. 
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Figure 5.1.19  PROJMAT / Hoenig Contour Plot 
 

Let us accept these parameters for a start and see if we can find better estimates of K and L∞, 
now that we have new values for C and Ts.  (A von Bertalanffy curve is like a Hoenig curve 
with C=0 and Ts=0).  Define a new K vs L∞ grid using boundaries spread around the previous 
estimates, for example K from 1.1 to 1.5 in 13 steps and L∞  from 140 to 180 in 13 steps.  You 
will be prompted for the fixed parameters C and Ts, while the last estimated values will have 
been filled in as defaults so you can accept these.  Now, surprisingly, we find that the 
maximum is towards the corner of the grid, at K=1.1 and L∞  =166.67.  Changing C and Ts has 
affected K and L∞ more that we expected.  At least we know in which direction the score 
function maximum lies.  A logical next step would be K between 0.9 and 1.3, and L∞ between 
150 and 190.  This is only a slight improvement, giving K=0.97 and L∞  =180, which is still on 
one edge of the grid.  We know that we are on the right track, however, because the score 
function is still increasing, and currently stands at -0.083.   
 
Interestingly enough, the point we are at now corresponds quite closely to the smaller local 
maximum that PROJMAT identified for the von Bertalanffy model.  If this had not happened, 
we would have had to investigate that other point separately, but it seems that the analysis 
we are doing will serve for both points. 
 

We need to shift the grid again, so this time try K from 0.8 to 1.2 in 13 steps and L∞ from 160 
to 200 in 13 steps.  This time the maximum is comfortably in the middle of the grid, at K=0.9 
and L∞  =193.33 with a score function of -0.081.  Once again the contour plot has two strips of 
white separated by an area of lower score function values, so we need to make sure any 
maximisation examines both areas (Figure 5.1.20).  Do an automatic maximisation using the 
grid range as the search boundaries.  You will see that the lower strip is investigated quite 
thoroughly, but the light blue lines hardly touch the upper strip at all.  The maximum in the 
lower strip has a score function value of -0.081, for K=0.902 and L∞  =193.48 and to=-0.13.  If 
we repeat the maximisation, restricting the search to K>1, we find maxima in the upper strip 
but the best has a function value of only -0.093 which is further from zero than our first result.  
You may notice that the maximisation is quite sensitive to search boundaries and values for 
fixed parameters, so on your own data it is worth trying a number of such variations. 
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Figure 5.1.20  PROJMAT / Hoenig Contour Plot with Maximisation  
 

Now that we are happy with our new estimates for K and L∞, we can try to refine C and Ts.  
Define a new C vs Ts grid, accepting the default ranges once more.  When you are prompted 
for constant values for K and L∞, you will see that the last estimates you obtained are filled in 
for you.  In this case we are not interested in the last maximisation that we did, so fill in our 
best estimates K=0.902 and L∞=193.48.  Once the grid has been calculated and you have 
looked at the contour plot, run a maximisation again with a restricted range.  This time, you 
should find C=0.6.7 and Ts=0.029 to provide the best score function of -0.078. 
 

Return now to a K vs L∞ grid, defined for K from 0.7 to 1 and L∞ from 180 to 210, in 11 and 13 
steps respectively.  The best grid score function is -0.074 which maximises to a score function 
value of -0.074 at K=0.76, L∞  =200.00 and t0=-0.14.  
 
If you continue repeating the process of maximising for C and Ts, then using those values to 
maximise for K and L∞, etc, you might be able to improve the score function even more.  
However, it does seem as if we are settling at values around K=0.75, L∞  =200 and t0=-0.15.  If 
you plot the histogram fit with these values you will see that it really looks quite good. 
 
You may have noticed the menu item Fit | Seasonal Growth Curve.  This function performs 
the cycle that we have been doing here, automatically.  There is a limit to how much you can 
expect from such a routine, though, so you should only use this when you have a good idea 
of what K or L∞ is, and can specify it very closely.  It is not uncommon for L∞ to be known by 
other means, and then you would be justified in using Fit | Seasonal Growth Curve.  In 
general, the manual method is far more effective because you can apply your own 
intelligence to the problem; you can backtrack and try other things where the automatic 
routine would proceed blindly.  You will see this sort of thing happening in the next section, 
where we see what ELEFAN can do with our data. 
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5.1.4.2 ELEFAN / Hoenig 
 
In our earlier use of ELEFAN to fit a von Bertalanffy model, we ended up with two fits with 
very similar score functions but quite different growth parameters.  These were close enough 
to warrant separate investigation. 
 
We will start with the best maximum we found, which was for Region 1 (Figure 5.1.18) at 
K=0.502 and L∞=198.264.  The first cycle should estimate C=0.190 and Ts=-0.147 with a 
score function of 0.488 which is already much better than the 0.469 that we started with.  
Returning to estimate K and L∞ using the grid 0.4<K<0.7 and 180< L∞<220 shows us that the 
grid was far wider than necessary.  We can maximise over the smaller area 0.4<K<0.6 and 
190< L∞<210 to obtain a score function value of 0.492, our highest yet.  You will find that 
repeating the cycle gives C and Ts values very close to the previous ones.  The K and L∞ 
estimates also do not change much, so all seems to stabilise at K=0.49, L∞  =200.00, to=-0.7, 
C=0.19 and Ts=-0.15, with score function value 0.492. 
 
Now let us examine the second maximum; although it was smaller than the first it is different 
enough to be worth checking.  Looking at this pays off quickly, too, because the C vs Ts grid 
produces a score function value of 0.501, which is already better than our final value from the 
first point.  Maximising over this grid produces another surprise: the global maximum is at 
C=0.358 and Ts=0.231. If we calculate another K vs L∞ grid over a reasonable range like 
K=0.6 - 1 and L∞=160 - 200 we can then maximise over an appropriate smaller area, in this 
case.  The maximum is at K=0.810, L∞  =181.568 and to=-0.24 with a score function value of 
0.516. If we calculate a new C vs Ts grid, we will find that we can maximise over the smaller 
range C=0.2 - 0.6 and Ts=0.1 - 0.4.  The score function increases to 0.518 for the estimates 
K=0.811, L∞  =181.502, to=-0.24, C=0.412 and Ts=0.253. 
 
As before, you may be able to improve on this by repeating the cycle.  If the parameters do 
not change much anymore, it is not worth pursuing further.  Remember always that you 
cannot expect a high degree of accuracy from estimation methods, so there is no sense in 
trying to estimate an answer that is precise to two decimal places.  
 

5.1.4.3 Pauly’s model 
 

If we had estimated C to be near to or greater than 1, we might have tried to use Pauly’s 
model.  This is basically like a Hoenig model with C=1 and a period of the year (NGT) in 
which no growth occurs.  You should not try to fit a Pauly model unless you have good 
biological reason to suspect that your stock experiences such suspended growth in certain 
seasons.   
 
Fitting such a curve involves the same process as for a Hoenig model, only in this case you 
cycle between K vs L∞ grids and NGT vs Ts grids.  If are already fairly certain of L∞ then you 
could try using the K vs NGT grid instead.  Ts can be used to adjust the time of year at which 
the no-growth period occurs, while NGT is the length of that time.  This subject will not be 
covered further in this tutorial, but it is discussed fully in the Technical Appendix. 
 
 

5.1.4.4 Comparison of estimates of seasonal growth parameters 
 
We have now used two methods for estimating the Hoenig growth parameters L∞, K, t0, C 
and Ts.  How well do the estimates compare, both with each other and with the "true" values 
used to simulate our data?  This is shown in the table below, and the fits are compared in 
Figure 5.1.21 a and b. 
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Method L∞  K t0 C Ts 
PROJMAT 200.00 0.76 -0.14 0.64 0.03 
ELEFAN 181.50 0.811 -0.24 0.412 0.253 

"True" values 175 1.0 -0.1 0.6 0.0 
 
 

 
Fig 5.1.21 a.  Estimates of seasonal growth parameters using PROJMAT 

 

 
Fig 5.1.21 b  Estimates of seasonal growth parameters using ELEFAN 
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ELEFAN has come the closest to K and L∞ (Figure 5.1.21 b), having estimates within 20% of 
the true values.  PROJMAT has done much better with C, t0 and Ts (Figure 5.1.21 a).  Note 
that you cannot get a better score function value by using the “true” parameters.  The 
discrepancy is not because we did not look in the right place, but rather because of the 
inherent problems involved in this sort of estimation.  No method and score function is perfect, 
which is why we try a number of different ones.  In the end, our two methods produced 
answers that were close enough to each other to give us reasonable confidence in the order 
of magnitude of our estimates.  It would be unwise to expect more from your analysis of your 
own data. 
 
5.1.5 Estimating total mortality rates Z 
 
Having obtained estimates of growth parameters, we now turn to estimating the total mortality 
rate, Z.  Three methods are available in the LFDA package. Unfortunately, these methods are 
all based on non-seasonal von Bertalanffy growth curves, so cannot be used to estimate 
mortality for a stock displaying strongly seasonal growth.  This is not normally a problem since 
most stocks’ growth can be reasonably described by the non-seasonal von Bertalanffy model.  
The case of strongly seasonal growth is a difficult one, for it is unlikely that such a stock would 
have non-seasonal mortality anyway.  For this reason such stocks should be treated with 
great care. 
 
This is a problem for us in the tutorial, however, since we created a dataset with nicely 
seasonal growth to demonstrate the upgraded capabilities of LFDA.  We would still like to be 
able to get some idea of the mortality rate for our stock.  What we will do, then, is to choose 
the “best” set of parameters out of our non-seasonal von Bertalanffy model estimates.  Look 
again at the histogram plots to see which fits look the best.  The fits with second best score 
function values for ELEFAN and PROJMAT both look reasonable and have parameters which 
are close to each other and close to the corresponding seasonal parameter estimates.  In 
fact, the ELEFAN ones are very close to the parameters estimated by ELEFAN for the Hoenig 
model.  Accordingly, we will use these growth parameters, i.e. K = 0.841 and L∞   = 180.51, at 
least for a start.  You may well wish to try using some of the other growth parameter 
estimates later for comparison. 
 
Three methods of estimating mortality are listed under the Functions menu.  These are the 
Catch Curve method, the Beverton-Holt method and the Powell-Wetherall method. For details 
of each of these, see the Technical Appendix. 
 
 
5.1.5.1 The catch curve method 
 
This method produces estimates of total mortality for each distribution by fitting a regression 
line through the right-hand side of a length-converted von Bertalanffy catch curve.  Select the 
menu item Functions | Catch Curve from the main application window.  A dialog box will 
appear asking you to specify values for K and L∞. 
 
In order to keep similar things together in this tutorial, we have taken you through each of the 
methods for estimating growth parameters before moving on to estimation of Z.  In practice, 
you may well wish to move directly to estimating of Z immediately after you have used each 
method for estimating growth parameters. Anticipating this, the package carries over as 
default values in this dialog box the results of the most recent successful estimation of growth 
parameters that you have completed.  In our case we are using old estimates, so fill in K = 
0.841 and L∞   = 180.51.  The window shown in Figure 5.1.22 will then appear. 
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Figure 5.1.22  Converted Catch Curve Mortality Estimate Dialog Box 
 
The list in the left hand side of the window contains an estimate of Z for each of the 10 
distributions in our dataset.  Beneath this is a panel containing the mean and standard error of 
these 10 estimates.  These estimates are not yet suitable for use as they are based on 
regressions through all the data points in the catch curve.  We really want the regression line 
to pass through only the descending arm of the catch curve. See Technical Appendix in the 
Help files for details about the method. 
 
Leave the first of the distributions in the list (1) highlighted. To the right of the list you will see 
a plot of the points on the catch curve (solid blue circles) as well as the dashed red line that 
has been fitted through them.  You now need to exclude the low age points from the 
regression, to determine the slope of the right-hand, descending arm of the curve.  By clicking 
on a data point with the left hand mouse button you can toggle points in or out of the 
regression.  Use the mouse to exclude all points in the regression up to and including age 1.1.  
As you do this you will see the slope of the regressed line (red dash line) changing and the 
mortality estimate for this distribution (to be found in the distribution list) changes. 
 
When you are satisfied with this fit (in this case Z = 1.35 for this distribution) return to the 
distribution list and highlight the next distribution.  This time, toggle off the points up to age 
about 1.4, just before the highest point in that peak.  You should see Z = 1.40 in the 
distribution list.  Repeat the process with all the distributions.  When you have done them all 
to return to the list of Z estimates.   There is a certain degree of subjectivity in the choice of 
points to include, but your Z estimates should be close to these: 
 
Distribution 1 2 3 4 5 6 7 8 9 10 
Z Estimate 1.35 1.40 1.51 1.45 1.29 1.26 1.31 1.66 1.34 1.54 
 
 

5.1.5.2 The Beverton-Holt method 
 
The Beverton-Holt method relies on a simple algebraic relationship between the mean length 
in each sample, the length at first full exploitation, the von Bertalanffy growth parameters and 
the total mortality rate Z.  
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Select the menu item Functions | Beverton-Holt Z item.  A dialog box should appear asking 
you to specify values for K, L∞ and Lc.  Lc is defined here as the first length class which is 
fully exploited.  For these simulated data, this is easy to specify, as we did not simulate gear 
selectivity or movements of the fish or the fishing fleet.  Use L∞  =180.5, K=0.84 and Lc=20, 
which is the lowest length appearing in the simulated data. The window will then extend to 
appear as shown in Figure 5.1.23. 

 
Figure 5.1.23  The Results of a Beverton-Holt Analysis.  
 
One estimate of Z is calculated for each separate length frequency distribution as shown in 
the table below. The mean and standard error of these estimates are also reported, and they 
are Z= 0.991 with Std Error= 0.171.  Since you cannot change these estimates at all, as you 
did in the previous paragraph, they are automatically written to the log file.  
 
Distribution 1 2 3 4 5 6 7 8 9 10 
Z Estimate 1.933 0.999 0.783 0.685 0.517 1.971 1.131 0.723 0.650 0.526 

 
 

5.1.5.3 The Powell-Wetherall method 
 
The Powell-Wetherall method uses a linear regression based on an algebraic relationship 
between L∞, K, Z and the mean lengths in the length frequencies. However, unlike the other 
methods, it does not directly calculate an estimate of Z; rather it comes up with a series of 
estimates of L∞ and the ratio K/Z.  While it thus provides yet another means of estimating L∞, 
it is a little more complicated to get estimates of Z.  
 
It might seem that all you have to do is to divide an estimate of K obtained using one of the 
other methods for estimating growth parameters by the estimated ratio K/Z in order to obtain 
the corresponding estimate of Z.  Unfortunately, that is not really appropriate.  The reason for 
this lies in the negative correlation we have mentioned several times between estimates of L∞ 
and K.  When you change your estimate of L∞, the corresponding best estimate of K also 
changes.  The best estimate of K from, say, the ELEFAN method will have associated with it 
a different estimate of L∞ to that suggested by the Powell-Wetherall method.  To be strictly 
correct, it is necessary, although tedious, to work out for each Powell-Wetherall estimate of L∞ 
a corresponding K before calculating a single estimate of Z.  This is what we strongly 
recommend you do when analysing one of your own data sets. It is especially important to do 
this when the Powell-Wetherall estimates of L∞ are substantially different from those obtained 
using the other methods.  However, to save you time in this tutorial, we have done those 
calculations for you. 
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Select the menu item Functions | Powell-Wetherall Z.  A window will appear (after a brief 
period time to perform calculations) that looks quite like the one that you saw while using the 
catch curve method.  This time though, for each distribution an estimate of L∞ and Z/K is given 
(Figure 5.1.24).  As before, you are given the option to modify each distribution by toggling 
points in or out of the regression.  
 

 
Figure 5.1.24  Powell-Wetherall Method 
 
Highlight the first distribution in the list to produce a plot like Figure 5.1.24.  The Powell-
Wetherall method calculates, for each length sample in a distribution, the smallest length in 
the length class L' and also Lbar, the mean length of all the fish in the whole distribution that 
are bigger than L'.  The plot that you see shows a linear regression of numbers in each length 
class against Lbar - L'.  The intercept on the x-axis is an estimate of L∞.  While the simple 
theory of the Powell-Wetherall method suggests that the points on this plot should all lie on a 
straight line, in practice they almost never come close to that over the full range of length 
classes. However, they often tend to lie much closer to a straight line for larger lengths near 
L∞.  From this plot, it looks as if the points for lengths greater than or equal to 120 lie pretty 
close to a straight line. 
 
The screen display indicates that all the points that had non-zero numbers of fish in them (i.e. 
length classes that did appear in the sample) are presently included in the regression.  What 
we need to do now is to remove all points from length classes with a minimum length below 
120 from the regression.  As before, use the left hand mouse button to toggle points on or off.  
Toggle off all points corresponding to lengths less than 120.  When you are finished, the 
highlighted estimate in the distribution list should read Z/K=1.55 and L∞  = 187.84. 
 
This deals with the first length frequency distribution.  Now repeat the process of toggling out 
all points with lengths deviating from the straight line from the remaining 9 distributions. For 
each distribution you will then have estimates of Z/K and L∞. Below these you will see a mean 
and standard error for all the distributions. 
 

All that remains is to convert these to estimates of L∞, K and Z.  To save time, we have done 
this for you in the way described earlier.  We have calculated the best estimate of K for each 
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Powell-Wetherall estimate of L∞, and then used that to obtain an estimate of Z.  We used 
ELEFAN for the estimation of K because we used ELEFAN’s growth parameter estimates for 
the other mortality calculations.  We fixed L∞ at a single value in the grid definition and set the 
number of grid points for L∞ to 1.  After the grid had been calculated we maximised over the 
range (one dimension).  We then picked the value of K corresponding to the highest score 
function.  You can check these calculations later at your leisure, if you want. The results are 
given below. 
 
 

LF Distribution L∞ K from  
ELEFAN 

Z/K Z 

1 187.84 0.648 1.55 1.00 
2 185.98 0.767 1.56 1.20 
3 187.79 0.648 1.83 1.19 
4 187.86 0.648 1.66 1.08 
5 183.08 0.794 1.17 0.93 
6 185.78 0.767 1.51 1.16 
7 188.03 0.648 1.80 1.17 
8 187.09 0.745 2.00 1.49 
9 183.7 0.796 1.36 1.08 
10 184.14 0.791 1.90 1.50 

Mean Z (Std Error)    1.20 (0.050) 
 
 
5.1.5.4 Comparisons of estimates of Z 

 
So far, we have only calculated estimates of Z corresponding to the growth parameters 
estimated by ELEFAN.  On real data we should also try the other parameter sets, especially 
those produced by the other methods.  The Powell-Wetherall estimates were calculated using 
ELEFAN estimates of K, but PROJMAT or SLCA could equally well have been used for that 
purpose.  A normal analysis would involve trying out all sensible combinations. 
 
The true value of Z in these simulated data was 1.  How well did the methods do in estimating 
Z?  The catch curve estimate was a bit high at Z=1.4, while the Beverton-Holt estimates 
varied considerably by distribution, although the mean Z estimate was very good at Z=0.99. 
The Powell-Wetherall method slightly overestimates Z at 1.20, but with a lower standard error 
than the Beverton-Holt method.  As with the growth parameter estimation, the different 
methods will perform with varying effectiveness on different datasets.  One should in any case 
not read too much into the present comparison because we are fitting non-seasonal models 
to seasonal data. 
 
That completes the tutorial.  We hope it proved useful and that you now feel ready to try the 
LFDA package out on your own data.  For an explanation of those menu options that we have 
not gone through here, please consult the Reference section, which also contains some 
further hints for using LFDA.  
 
All that is left is to exit the LFDA package.  To do this, select Exit from the File menu.  You 
will receive a warning about saving log files (and your data if you have altered it since your 
last save), which you should definitely take heed of when analysing your own data. If choose 
not to keep the log file then it will be deleted. 
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5.2 CEDA Tutorial 
 
The aim of this section is to guide you through the operation of CEDA version 3.  If you have 
not used CEDA before, this tutorial will help you to become familiar with the procedures 
necessary to use the package.  If you have used CEDA version 2 you will notice some 
changes in version 3, particularly in the design of the user interface.  
 
This tutorial will show you how to use the basic elements of CEDA (i.e. data acquisition, 
model fitting and projections) by detailed referral to the analysis of two example data sets.  By 
working through this tutorial, you should become familiar with most of the procedures used in 
CEDA, and should gain sufficient expertise and confidence to continue exploring CEDA's 
features with your own data.  Before continuing with the tutorial it would be useful to familiar 
with the general principles of model fitting as discussed in the Guide to Fitting Models section 
of the Help files. 

 
5.2.1 Loading data into CEDA 
 
The Reference and Operating Guide explains the various different formats in which data can 
be imported into CEDA.  There are three available procedures for loading data into CEDA. 
These include  
1. Importing ASCII files 
2. Opening CEDA Files. (CEDA 2.0 (*.cd2), CEDA 3.0 (*.cd3).) 
3. Manual data entry using the keyboard. 
 
 Note:  CEDA 3.0 will not open CEDA version 1 files. 
 
 

5.2.1.1 Importing ASCII files 
 
SQUID.TXT is an ASCII text file of catch and effort data for a squid fishery taken from 
Rosenberg et al (1990).  A printout of the file looks like this: 
  
 Illex argentinus 1989      
     week    totcat            effort        meanwt   n 
      11.00    5859.29    3380.75      .000354   1 
      12.00  22185.05    9595.82      .000394   2 
      13.00  23994.31    9292.13      .000436   3 
      14.00  24490.95    7803.33      .000481   4 
      15.00  24904.04    8868.42      .000528   5 
      16.00  14024.95    9225.93      .000582   6 
      17.00  12099.11    9520.48      .000636   7 
      18.00  16630.94    9133.92      .000695   8 
      19.00  17395.95  10014.95      .000756   9 
      20.00    8839.38  10147.58      .000821 10 
      21.00    9944.00    9075.92      .000888 11 
      22.00    8006.33    8359.62      .000963 12 
      23.00    3270.66    3982.62      .001000 13 
      24.00    1980.80    3627.17      .001000 14 
      25.00          1.80        33.00      .001000 15  
      26.00          4.04        16.00      .001000 16 
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To import these data into CEDA you should select the File | Open option from the menu.  You 
will then see an open file dialog box. Select Files of type Text (*.txt) from the pull down menu. 
If you are in the installation directory the file [SQUID.TXT] should appear in the list, otherwise 
browse to the folder chosen during installation. Open this file and you will then be presented 
with the ASCII Import Wizard. Import the ASCII data column by column, following the 
instructions on the wizard (see Importing Data from an ASCII File). The list below shows the 
ASCII columns and the associate CEDA columns to which they should be assigned; 

 
 ASCII Column  CEDA Column 
 week         Timing 
 totcat         Tot. Catch Wt 
 effort         Effort 
 meanwt         Mean Wt 
 n               (None) 
 

CEDA loads the data and presents it within the CEDA Data Sheet. You will then be asked to 
specify a filename and location for the newly imported data. Accept the default location and 
filename of squid.cd3. 
 
Within the datasheet you will notice that 3 additional columns of data have been calculated by 
CEDA. These columns are Tot. Catch Wt, Catch Wt and Catch Nums. Where these columns 
come from and what they are used for is explained below and also in the Reference and 
Operating Guide. The dataset description in the ASCII file is imported into the CEDA dataset 
as the File Description and will appear in the title bar of the main application after the name 
and location of the current file. The File Description can be changed by selecting File 
Description from the Edit menu. 
At this stage it is not possible to edit the data. Editing of data can only be done from within 
Edit Mode. DO NOT enter edit mode at this stage. 
 
Filling Out of Columns 
The names at the top of the columns in the CEDA data sheet correspond to the columns you 
selected from the pull down list when importing with the ASCII Import Wizard.  You will notice 
that the column Tot. Catch Nums, which stands for total catch in numbers of animals, has 
some numbers in it, even though you have not imported any.  This is because CEDA 
automatically fills out data columns for which it has the necessary information.  In this case 
you have imported the total catch in weight (Tot. Catch Wt) and the mean weight of each 
animal (Mean Wt).  CEDA is therefore able to calculate the total catch in numbers (Tot. Catch 
Nums) of animals as follows: 
 

 
The following columns of data can now be seen in the CEDA data sheet. 
 
  Tot. Catch Wt   Total weight of all removals. 
  Tot Catch Nums  Total number of all removals. 
  Mean Wt      Mean weight of an individual. 
  Effort     Fishing effort. 
  Catch Wt    Catch in weight resulting from Effort. 
  Catch Nums   Catch in numbers resulting from Effort. 
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(see Filling Out Columns in Edit Mode  for additional explanation of the data types). 
 
Decimal Places 
You will also notice that the column under mean weight (Mean Wt) shows all zeros.  This is 
because the default number of decimal places set by CEDA is zero.  If you go back and look 
at the print out of SQUID.TXT you will notice that the numbers under the heading meanwt are 
very small.  This is because the units of weight are tonnes and the highest mean weight for an 
individual squid is about 1 kg.  The mean weights in the data window can be displayed 
properly by changing the number of decimal places in the column.  To do this you must move 
click with the mouse to a position in the column Mean Wt and then select the Edit | Number 
option from the menu, using the mouse or the keyboard as before. Change the number of 
decimal places to 6 and the number format to Fixed (See Number Formats). 
 
 Units of Weight 
Note that CEDA expects that all of the weights entered in one data file to be expressed in the 
same units of measure. If you enter total catch weights and mean weights in different units, 
CEDA will calculate incorrect numbers of animals.  Similarly if you enter numbers of animals 
and mean weights, CEDA automatically calculates the total catch in weight.  The units of the 
catch weight calculated by CEDA will be the same as the mean weights you entered. 
 
Tip - Standardise the units of weight in your input data files 
 
You have now completed the procedure for importing a text file into CEDA and CEDA has 
saved your imported data in the file SQUID.CD3, as specified by you at the start of the import 
procedure.   
 
 

5.2.1.2 Entering data manually from the keyboard 
 
The editing facility in CEDA means that it is also possible to enter your dataset directly into 
the software package using the keyboard.  Datasets used for analysis using CEDA are 
usually not very big.  There may be considerable amounts of raw data involved, but these are 
commonly distilled into an unbiased and reliable series of catch and effort data that can be 
analysed using CEDA.  It should therefore not take very long to use this method of data entry.  
It is particularly useful if the only copy of the dataset you wish to analyse is on paper.  Once 
you have entered the data there is a menu option in CEDA for exporting the data as an ASCII 
text file for import into other packages (File | Text Export). 
 
 NOTE 
The procedure for manual data entry which we suggest you follow here is for demonstration 
purposes only.  The data analysis in the remainder of the tutorial is carried out only using the 
data you have imported from SQUID.TXT and TUNA.CD2.  If you want to save time you can 
skip straight to the data analysis section.  You can return to this section later, when you want 
to learn how to enter data from the keyboard.   
 
Manual Data Entry 
Select the File | New option from the menu to start the procedure for manual data entry.  You 
will then see a dialog box which is headed New Data Set (see Figure 5.2.1). You must 
provide a file description (maximum 40 characters) for the new dataset, for which CEDA 
provides the default option “New Data Set”. If you want to you can change the file description 
for something more descriptive, such as 'Squid data entered by keyboard'. If you want to 
change the description later you can do this by selecting the Edit | File Description option 
from the menu. 
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Figure 5.2.1  The New Data Set dialog Box 

 
 
Below the File Description will see text boxes in which you must specify the time period for 
the dataset.  Refer back to the printout of SQUID.TXT.  You will see that the time period - i.e. 
the column week starts from 11 and runs in equal increments up to 26.  You should therefore 
enter 11 in the first box and 26 in the second.  CEDA assumes that the time period is divided 
up into equal increments of 1.  Use the mouse or <TAB> to move between the boxes. 
 
You are then presented with a MultiPick box.  This allows you to select the target columns 
into which you are going to type the data.  The column headings you choose will be used to 
construct the data sheet into which you will type the data in edit mode. 
 
The nine available column headings are listed on the left hand side.  When column headings 
are chosen they move to the list on the right hand side.  To select a column heading you 
simply position the highlight over the appropriate title (e.g. Tot. Catch Wt) and then click on 
the button marked [>].  This moves the chosen heading from the list on the left to the list on 
the right.  If you move a heading, but later decide that you don't want it, you can move it back 
again by highlighting it and using the [<] button.  Using the [>>>] and [<<<] buttons moves the 
entire list one way or the other. 
 
You will remember that SQUID.TXT contains the columns week, totcat, effort, meanwt and n.  
You will be entering data from the columns totcat, effort and meanwt using the keyboard 
(week will be generated automatically for the timing column - see below).  You should 
therefore choose the columns Tot. Catch Wt, Effort and Mean Wt, moving them from the left 
side to the right side of the MultiPick box. 
 
After you have done this click OK and CEDA will present you with a dialogue box in which you 
should provide a name and location for the new CEDA file. The file will be given the default 
extension *.cd3.  
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You are then presented with the CEDA data sheet which has the timing already entered in the 
left most column and -1 (CEDA uses -1 as a 'missing value') in the three columns Tot. Catch 
Wt, Effort and Mean Wt.  You can now enter the data from SQUID.TXT in exactly the same 
way you would in a spreadsheet.  Simply type in the numbers in the appropriate place and the 
arrow keys move the cursor from cell to cell.  Start with the cursor in the top left cell.  Type 
5859  <↵ > 22185  <↵ > 23994  <↵ > etc. 
 
Note that the data sheet is shaded light blue and that Edit and Help are the only menu 
choices available.  This is because you are now in edit mode, see Edit Mode for a detailed 
explanation.  When you have finished entering the data and you are sure there are no 
mistakes (although mistakes can be rectified later by returning to edit mode), click on Edit 
menu item.  You then have the option to do various things, including inserting or deleting 
columns (Insert Column or Delete Column) and changing the timing intervals (Add Row 
and Delete Row).  When you are satisfied with the data you have entered click on Edit | Edit 
Mode to exit edit mode.  CEDA will now fill in columns where appropriate (see Edit Mode).  
This is the same as before, when CEDA calculated catch in numbers from the catch weight 
and mean weight data which you imported directly from SQUID.TXT.   
 
One final thing you must do upon leaving edit mode is include all data points for analysis. This 
is done by clicking the check boxes for each time interval in the column marked Include. The 
data you have entered by hand are now ready for analysis using CEDA. 
 
 
5.2.2 Squid tutorial 
 
The analysis of the squid data will be done using the data which has been imported 
previously from the ASCII text file SQUID.TXT (If this has not been done, see Importing ASCII 
Files).  Select the File | Open option from the menu. (At this stage, if you have a file open or 
have been manually entering a file using the keyboard, you will be prompted to save the 
loaded file). Load the file Squid.cd3 
 
The squid data will appear in the CEDA data sheet. Prior to starting on the data analysis we 
suggest you spend a few minutes familiarising yourself with the options for data presentation.  
Before starting a detailed analysis it is always worth taking a step back and looking at the 
data.  The graphing facilities under the menu option Data | Data Plots are useful for this 
purpose (This is covered in the first stage of the tutorial below).  You can plot any of the 
columns in the dataset against the timing column to look for trends in the data.  You can also 
print out the dataset using the File | Print option.  
 
  

5.2.2.1 Selecting model options 
 
If you select the Data | Data Plots option and plot Tot. Catch Wt against Time you will see 
Figure 5.2.2  below. 
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Figure 5.2.2 Total Catch Plotted Against Time for the Squid Dataset 
 

 
 
This shows a rapid increase in catch over the first week (11 to 12), which levels off up to week 
15 before a gradual decline to zero at week 25, with a few humps and bumps on the way.  If 
you plot catch in numbers Tot. Catch Nums against time you will see an increase in catches 
for the first week which is followed by a steady fall.  The No Recruitment section explains that 
the most suitable method of analysis for this type of data from a squid fishery is a depletion 
model with no recruitment.  This method of analysis is available in CEDA.  You are now ready 
to analyse the data. 
 
The options for data analysis are found under the menu headings Fit and Projections.  To 
specify the analysis method you want to use select Fit | New Fit from the menu.  You will 
notice that none of the other options under the menu heading Fit are available apart from Fit 
Manager.  This is because they all refer to analyses which are done after the initial parameter 
estimation.  Once the initial parameter estimation has been done all of these options will 
become available.  When you select the Fit | New Fit option, you are presented with 5 
available models in a dialog box.  Select No Recruitment.  You are then presented with a 
dialog box in which you must specify a number of input parameters (see Figure 5.2.3 below). 
The dialogue box contains a mixture of text boxes and check boxes. Those options which are 
not applicable for the current model and error model with be ‘grayed’ out. For the No 
Recruitment model you are first prompted to enter a natural mortality rate M. 
 



 

 
 
MRAG CEDA and LFDA enhancement 42 

Figure 5.2.3 Model Input Parameter dialog box for the No Recruitment model. 
 

 
 
The units of the natural mortality rate (e.g. per day, per week or per year) should be the same 
as the time period of the data.  The time period of the squid data is one week.  The natural 
mortality rate should therefore be expressed in terms of weeks.  A typical weekly natural 
mortality rate for squid is 0.05.  You should enter 0.05 at the prompt.  
 
You then have to specify which of the three available error models (Least Squares 
(Unweighted), Log Transform or Gamma) you want to use when fitting the data.  All three 
error models will be tested in the course of this tutorial.  The first one to try is the fastest and 
simplest, Least Squares (Unweighted).  To select this option click on it using the mouse.  
Alternatively use the <TAB> key to move to the Error Model box and then use the up and 
down arrow keys to highlight your selection.  
 
You will also notice two further grayed out options Set Starting Estimates Manually and View 
Minimisation Graphically, both of which are unavailable for the combination of No Recruitment 
and Least Squares (Unweighted).  
 
Once you are satisfied that you have made the correct choices in the dialog box, close it by 
clicking on the OK button.   

 
5.2.2.2 Initial parameter estimates 

 
Once you have confirmed the choice of input parameters, CEDA takes a small period of time 
(this may be a few seconds on slower computers) to fit the model to the data.  After the model 
has been fitted, CEDA displays two new windows called Parameters Estimates (Figure 5.2.4) 
and Expected and Observed Catch (Figure 5.2.5). 
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Figure 5.2.4 The Parameter Estimates Window    

 
 
At the top of the Parameter Estimates window is the population model that has been fitted (in 
this case No Recruitment was selected), the error model selected (Least Squares) and a 
goodness-of-fit measure (R2).  
 
Below this is a white box labelled Input Parameters, which contains a list of the user input 
parameters for the current fit. In the case of the No Recruitment model the only user input 
parameter is natural mortality M. 
 
A second white box labelled Model Parameters contains the estimated parameters calculated 
by CEDA. For the current Population Model and Error Model there are 3 estimated 
parameters: 
 
  N1     Initial population size in Numbers 
  q     Catchability coefficient 
  Final Population  Final Population Size in Numbers 
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Figure  5.2.5  Expected and Observed Catch. For more information on this type of graph see 
Graphs of Expected and Observed Catch / CPUE 
 

 
 
The graph shows a reasonable match between observed and expected catch, but that does 
not necessarily mean that the fit is adequate.  In order to assess how well the model fits the 
data it is necessary to consider a number of other outputs provided by CEDA, collectively 
known as the diagnostics.  The first of the diagnostics you should look at are the residual 
plots, which are discussed further in the Residual Plots section. 
 
 

5.2.2.3 Examining the fit 
 
If you browse around the CEDA data sheet in the main application window you will notice that 
the results of your first run have been added to the dataset.  The following columns of data 
have been added: 
 
 Exp CPUE    Expected (estimated) CPUE. 
 Obs CPUE    Observed CPUE. 
 Exp Catch Nums   Expected catch in numbers. 
 Pop Wt     Population abundance in weight. 
 Pop Nums    Population abundance in numbers. 
 
The residual plots are found under the Graph menu option.  Select this option and open the 
following graphs by selecting them in turn from the Graph menu. 
 
 Residual Catches vs Time 
 Residual Catches vs Expected Catch 
 Expected & Observed CPUE 
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You will now have a total of four graph windows loaded on the screen (including the Expected 
and Observed Catch graph window produced after running the model). Organise these four 
windows so you can see all four graphs. 
 
Note: You may find it useful to minimise the Parameter Estimates window and the main 
CEDA application window to create more space on the desktop. 
 
These are diagnostic graphs, giving you information on how well the model fits the data. Your 
screen should contain the four graphs shown in a layout similar to that shown in Figure 5.2.6. 
 
Figure 5.2.6 Diagnostic Graphs 

 
 
Examine the two residual plots.  If you are unsure what to look for, refer back to discussions 
in Residual Plots.  Briefly, in a "good" residual plot, the points should be evenly scattered in a 
horizontal band.  There should be no sign of trends, curvature or tendency for scatter to 
increase or decrease as you look along the horizontal axis; nor should there be any 
appearance of long sequences of points consistently on one side or the other of the horizontal 
axis. 
 
In both of the plots shown here, there is a tendency for the average absolute values of the 
residuals to change along the horizontal axis, giving a "triangular" appearance; as you move 
to the right, there is a decrease in absolute value in the time plot, and an increase in the 
expected value plot.  Do not be misled by the seemingly "high" R2 value; the evidence of 
these two residual plots shows that the fit is in fact poor. 
 
What other conclusions can be drawn from these diagnostic graphs? Under the assumption of 
no recruitment, population numbers should systematically decline due to fishing and natural 
mortality.  This should be reflected by a consistently decreasing trend in CPUE (although 
there may of course be some random fluctuation).  However, this dataset does not show such 
a trend.  Look at the graph of Expected & Observed CPUE; over the first four points, the 
observed CPUE actually increases.  More background information is needed to diagnose the 
problem. 



 

 
 
MRAG CEDA and LFDA enhancement 46 

 
The data in SQUID.TXT are for a fishery targeting the squid species Illex argentinus.  This 
species is known to migrate into the area of fishing at about the same time as the fishing 
season and the collection of catch and effort data begin.  If there is significant migration into 
the area after the start of the fishery, the basic assumption of no recruitment is violated.  In 
this case other sources of information (e.g. data from sampling by scientific observers) 
provide evidence of migration into the area for the first three weeks of the fishery.  The 
commercial CPUE at this time increases, due to immigration, and does not tell us anything 
about the total stock size.  It is therefore sensible to re-do the data analysis without the first 
three CPUE data points.  Note that it is vital that we continue to use all of the total catch data.  
Without this the cumulative catch, and therefore the stock size, will be underestimated (see 
Data Requirements).   
 
Saving the Fit 
Before proceeding to re-do the fit you should save the working you have done so far.  This is 
done by adding the fit to the Fit Manager.  Each fit is logged separately within the CEDA file.  
Unlike CEDA 2.0, with CEDA 3.0 after a fit has been added to or deleted from the fit manager, 
the file, including all fits is saved to disk. The CEDA data file with which you are working 
(SQUID.CD3 in this case) will get bigger.  This is convenient because it means that a record 
of your analysis is saved with the data. 
 
Select Fit | Fit Manager from the menu.  This brings up the fit manager, a tool which allows 
you to save, delete and reload different models you have run on your dataset. We are going 
to add the current model to the fit manager. Press the Add Current Fit button. You are then 
prompted to enter a description to identify your work.  This is important, because later you will 
need to identify each fit you have logged when you want to retrieve it.  We suggest you call 
the first logged fit Illex1.  You should type this in the description box and click on the OK 
button. After a short delay whilst the details are written to disk, the fit you have just saved will 
appear within the grid on the Fit Manager.  You can reload a logged fit and the associated 
plots later on.  This is useful for making comparisons between different fits (See Saving, 
Loading and Deleting Fits for detailed information on using the Fit Manager). Dismiss the fit 
manager by pressing the Close button. 
 
Re-Doing the Fit 
Now we can address the problem with the catch data at the start of dataset. It is possible to 
temporarily remove ('toggle out') some of the data points from the analysis by using the 
mouse to toggle points directly on the 4 diagnostic graphs which are currently maximised.  
This a useful feature in CEDA, but it should be used very carefully.  You must always have a 
good reason for leaving out data from your analysis.  Data should not be left out just because 
they do not appear to fit in with expected results.  Other information, such as that provided 
above for the Illex argentinus fishery, is required.  If you leave out data without good reason, 
even though your results look good, they might be dangerously misleading (see Guide to 
Fitting Models).  
 
 CAUTION:  Never omit data points from the analysis unless you have a good reason to do 
so. 
 
We shall now temporarily exclude the three offending  points from the analysis.  Select the 
graph of Expected and Observed catch and with the mouse click on the first data point in the 
time series (week 11). A message box will appear asking if you wish to continue and clear the 
current fit. Select ‘Yes’ . The data point which you just clicked has turned from a solid circle to 
an unfilled circle which represents a point that will not be included in analysis, i.e. it is toggled 
out. Notice that the point has been toggled out in all the other plots and also from the CEDA 
data sheet in the main application window. Returning to the graph of Expected and Observed 
Catch, use the mouse to toggle out the following two data points so that the first three points 
are all excluded. You will see the display below: 
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Figure 5.2.7 The Squid Dataset with Three Points Toggled Out.  
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When working with the diagnostic graphs it may be useful to know where a data point on the 
Observed and Expected Catch graph is to be found on the residual plots. Therefore CEDA 
has provided the ability to highlight a data point on all graphs, thereby allowing the user to 
decide whether or not he wishes to toggle out the point. This is particularly useful for the plot 
of Residual Catch vs Expected Catches which does not share the same X-axis. For example, 
return to the plot of Observed and Expected Catch and click the right hand mouse button over 
the first data point. That point and the same data point in all the other plots will change to a 
red square. Turn off the highlighter by clicking once more with the right hand mouse button 
over any of the highlighted points. 
 
From the menu select Fit | New Input Parameters. CEDA will clear all graphs and display the 
form for input of the model parameters. Input parameters and model selections will be the 
same as those for the last fit used on the data set. CEDA will then allow you to select new 
input parameters if you want to.  For this example you should leave the inputs the same (M = 
0.05, Least Squares (Unweighted) error model).  When you click on OK, CEDA will refit the 
model to the remaining data points.  You will again see the Parameter Estimates window and 
a graph of Expected & Observed Catch.  You will see immediately that the line of expected 
CPUE fits the data points much better than in the previous fit. Return to the main window and 
using the Graphs menu once again bring up the same four diagnostic graphs.  This will give 
the display in Figure 5.2.8. 
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Figure 5.2.8 Diagnostic Graphs After Removing the First Three Points 

 
 
The points in the residual plots are scattered in a more horizontal band than they were before.  
Leaving out the three suspect Catch data points has removed some of the triangular pattern.  
However, there now appear to be two other potential outliers - points which fall on or outside 
the horizontal dotted lines on the residual plots (remember that only the included data points 
count now - the open circles have been eliminated).  
 
The presence of these potential outliers is of concern.  First we will compare this fit with Illex1 
and then we will address the problem of the potential outliers. 
 
Comparing Fits 
You can compare these new plots with those you obtained previously when you were using 
the whole dataset.  Dismiss the plots from the screen and select Fit | Fit Manager to bring up 
the fit manager. Press Save Current Fit and save the current fit as Illex2. Using the mouse to 
highlight the previous fit we saved, called Illex1 and press the Load Fit button or double click 
with the mouse on the appropriate fit in the fit manager.  You are asked to confirm that it is 
OK to clear the existing fit.  Providing you have logged the existing fit then it is OK, because 
you can load it up again whenever you want to.  Click on OK. This brings back the Parameter 
Estimates window and plot of Expected & Observed Catch that was displayed after fitting. 
Using the Graph menu display the residual plots also. 
 
The exclusion of the first three points also changes the parameter estimates.  Using the entire 
dataset (Illex1), the estimate of N1 is 5.636E+08 compared with 4.969E+08 using the reduced 
dataset (Illex2); the estimates of q are 1.349E-05 and 2.204E-05 respectively. 
 
Is Illex2 the best fit that can be obtained? Not necessarily; even though the R2 is higher 
(0.916 for Illex2 and 0.881 for Illex1), there is still the problem of the outliers.  Consideration 
should be given to the choice of error model.  Is Least Squares (Unweighted) the most 
appropriate? Thus far it has been used only because it is the fastest to run on the computer.  
Remember there are two other error models which could be used: Log Transform and 
Gamma.   
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Using Different Error Models 
We will now repeat the Illex2 fit using the other error models to see what difference it makes.  
For the same reasons as before, the first three data points will be excluded. If the first three 
data points are not toggled out you should toggle them out now.  Select the option Fit | New 
Parameters from the menu (note that you can only select this if you have a fit already 
loaded). Providing Illex2 was the last fit you had loaded, the first three data points will already 
be toggled out.  
 
The dialog box for specifying the Model Input Parameters appears on the screen.  You should 
specify an M of 0.05 as before and select the Log Transform error model.  As before you 
should not opt to set starting estimates manually.  If you select the wrong option by mistake, 
simply click on Cancel and start again. 
 
Select the same four diagnostic plots as before (see Figure 5.2.9).  You will see obvious 
trends within the residual plots, and an isolated outlier at week 25. There are no good reasons 
from either squid biology or the operation of the fishery to exclude the data point at week 25 
(see Outliers).  This is probably the best fit we are going to achieve using the log transform 
error model.  The strong trends in the residual plots are sufficient evidence to conclude that 
this error model is not appropriate for this dataset. 
 
Figure 5.2.9 Diagnostics for Log Transform Error Model 

 
 
Save this fit using the fit manager (calling it Illex3) and repeat the same process with the 
gamma error model.  Remember that the first three data points should be excluded.  With the 
gamma error model, residual plots are replaced by percentile plots (see Residual Plots). Use 
the Graph menu to display the percentile plots and the graphs of Expected & Observed CPUE 
and Expected & Observed Catch, as usual.  You will see the display shown in Figure 5.2.10.   
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Figure 5.2.10  Diagnostics for Gamma Error Model 

 
 
Percentile plots can be read very much the same way as residual plots.  Outliers are points 
that are very close to the top (1) or bottom (0) of the graph.  It is harder to tell whether an 
outlier is "extreme" or not with a percentile plot.  However, pattern, trend and sequences of 
points all on one side or other of 0.5 on the vertical axis are still the things to look out for.  The 
correct choice of error model may not solve all of these problems, but it should help with 
some.   
 
There is at least one data point which could be considered as an outlier, at week 17.  Apart 
from this problem with outliers, which is common to all of the fits we have tried here, the 
gamma percentile plots do not indicate any other problems with the fit.  You will remember 
that, by contrast, the least squares residual plots showed a triangular pattern, even after the 
first three points were excluded, and the log transform residual plots showed strong trends.  
The gamma error model therefore appears to be the most suitable for this dataset. 
 
However, the presence of an outlier is still a problem.  There is no particular reason to omit 
this data point from the analysis and to do so without a good reason would be wrong.  Outliers 
cannot be omitted just because they are outliers - the problem may be with the model rather 
than the data.  One approach when faced with this problem is to test how influential the outlier 
is on the parameter estimates made by CEDA.  This can be done by omitting the outlying 
data point temporarily and re-running the analysis to see what difference it makes (see the 
later section 'Re-doing the Fit').  In this case the parameter estimates are not very different 
with or without the Catch data point at week 17.  This is a very different result to the tuna data 
analysis later in this tutorial.   
 
Since the parameter estimates are relatively insensitive to the presence or absence of the 
outlier, we shall continue the analysis using all of the data points (except of course the first 
three points).  It is better to do this than to exclude the outlier, because the arbitrary exclusion 
of the most "extreme" point would lead to underestimation of the variability in the data and to 
confidence intervals which are artificially narrow.   
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Use of R2 
The conclusions reached so far on how well the models fit the data have been made without 
directly using the goodness of fit (R2) values.  We have concentrated on an examination of 
diagnostic graphs (residual plots etc.) and some consideration of the effects of known 
biological phenomena.  It would in fact be wrong to use R2 values when deciding  which error 
model to use.  The three error models (least squares, log transform and gamma) use different 
methods of calculating R2.  Any comparisons between the R2 values reported by different 
error models are therefore invalid.  It is also wrong to use R2 values as a basis for excluding 
particular data points.  This is because the resulting data series will be of different lengths and 
their respective R2 values therefore cannot be compared.   
However, it is valid to compare values of R2 between fits where data series of the same length 
and the same type of error model have been used.  But this should never be used as the only 
measure of the validity of the fit of the model, because it tells you nothing about the 
distribution of the residuals. 
 
WARNING:  Never use R2 as the only measure of how well a model fits the data. 
 
Gamma Fitting 
When you are analysing your own data, if you also conclude that the gamma error model is 
the most suitable, ideally you should proceed using only gamma fitting in subsequent runs.  
The problem is that gamma fitting can be extremely slow, especially when generating 
confidence intervals.  When analysing your own data, this may not be a problem, especially 
as you should not have to generate confidence intervals very many times; if it has taken 20 
years to collect a dataset, then leaving a computer running for half an hour is a small price to 
pay for an improved analysis! However, the aim of this tutorial is to demonstrate the features 
of CEDA within a reasonably short time.  We therefore suggest that you use the Least 
Squares (Unweighted) error model for all subsequent work on the squid dataset.  The least 
squares residual plots are not perfect, but they are much better than those for the log 
transform error model, and the parameter estimates are close to those of the fit using the 
gamma error model.   
 
You should log the current fit (i.e. the one using the gamma error model), calling it Illex4, and 
proceed to the next part of the tutorial. 
 
Sensitivity to M 
The next step in the analysis of the squid data is to investigate the sensitivity of the fit and 
parameter estimates to different values of the natural mortality rate M.  The little that is known 
about natural mortality rates in comparable squid species suggests that the true value is likely 
to be within the range 0.01 - 0.10 per week.  Try re-fitting the model (use the menu item Fit | 
New Input Parameters) with several values from this range, always using the least squares 
error model.  Remember to log the fits (use names like M0.01 and M0.03) so that you will be 
able to retrieve them later, and also to make sure that the first three points are toggled out 
every time.  Look at the effects of varying M on the parameter estimates, residual plots, plots 
of observed and expected CPUE, and also the plot of observed and expected catch.  Also, 
make a note of the R2 value for each fit.  It is valid to compare values of R2 between these fits, 
because the length of the data series and type of error model are the same. 
 
You should find that varying M makes little difference to the quality of fit, both in terms of the 
diagnostic plots and the value of R2.  One corollary of this is that it is obviously hopeless to try 
to use this dataset to estimate M! Unfortunately, varying M does make a large difference to 
the parameter estimates; as M is lowered, the estimate of N1 decreases and the estimate of q 
increases.  These parameters are therefore described as sensitive to the choice of M. 
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In the absence of better information on the value of M, all that can be done is to present a 
range of results.  This applies both to point estimates of parameters and to the confidence 
intervals which you are about to generate using CEDA.   
 
 

5.2.2.4 Generating confidence intervals for the squid data 
 
One of CEDA's most useful features is that it allows you to generate confidence intervals for 
the estimated parameters.  The method used to generate confidence intervals, known as 
bootstrapping, is explained elsewhere in the manual. 
 
Make sure that the logged fit Illex2 is currently selected (use Fit Manager for this).  Then 
select the menu option Fit | Generate Conf. Ints or press the Conf. Ints button on the 
Parameter Estimates form.  A progress bar showing that the bootstraps are being evaluated 
appears on the screen.  The confidence intervals are generated after a few seconds. You are 
then asked to specify the confidence interval you require.  The defaults are set for a two-sided 
95% interval; if instead you wanted a lower 90% interval, for example, you would enter 0.1 
and 1 in the two cells of the dialog box.  When you have entered the confidence intervals you 
require (we suggest you start with the defaults), click on the OK button.  The Parameter 
Estimates window then resizes itself to display a new white output box which displays the 
confidence intervals for q and N1 (See Figure 5.2.11).  
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Figure 5.2.11   The parameter estimates window resized to display Confidence Intervals. 

 
 
This screen can be printed by clicking on the Print button. The frequency distributions of the 
bootstrap estimates of N1 and q  whose values lie within the selected confidence intervals are 
now added to the list of plots under the Graph menu. Using the Graph menu open up the two 
histograms q (0.025..0.975), n=500 and N (0.025..0.975), n=500. These plots show the 
frequency distributions of the parameter estimates (q and N1) and are illustrated below in 
Figure 5.2.12. 
 
Figure 5.2.12  Frequency distributions of Least Squares bootstrap parameter estimates 
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The confidence intervals you specified in the previous dialog box determine how much of 
these graphs you see.  The horizontal axes are adjusted according to the limits on display.  
The maximum possible extent of the graph would correspond to specifying values of 0 and 1 
for the confidence interval in the dialog box titled Enter High and Low Confidence Levels (i.e. 
a 100% confidence interval). 
 
The reason for not showing the whole graph is that, with some datasets and models, all that is 
then displayed is a "spike" at one point for N1, and a horizontal axis ranging from 0 to 1E+29.  
Such graphs are not terribly informative.  The reasons why they sometimes occur, and the 
solution to the problem (using a smaller range in the dialog box), are discussed in the 
sections discussing Confidence Intervals and Fitting Models.   
 
These frequency plots are intended to give a qualitative impression of the shape of the 
confidence intervals.  In Figure 5.2.12, the distribution of q is slightly left-skewed.  Sometimes 
you will see one or other highly skewed plot; if the skew is to the right, this indicates that the 
upper limit of a two-sided confidence interval will be much further from the point estimate than 
will the lower limit. 
 
Close down the two frequency plots and save this fit (using Fit Manager) to avoid losing the 
confidence intervals you have just generated (call this fit Illex5).  If you want to re-display the 
frequency click on the Graph menu and you will see that CEDA has added them to the list of 
plots available for display. 
 
Sensitivity to M 
The confidence intervals you have just calculated are for a natural mortality rate M of 0.05 per 
week.  However, as mentioned earlier, the parameter estimates are sensitive to M and there 
is some uncertainty in the value used here.  The true value is probably somewhere between 
0.01 and 0.1.  Therefore assuming a particular value of M in the calculation of the confidence 
intervals may lead to an under-representation of the uncertainty in the parameter estimates.  
One approach in this situation is to calculate confidence intervals for a range of values of M 
and combine these to form an overall conservative confidence interval. 
 
For M of 0.01, 0.05 and 0.1, a range of 95% confidence intervals for N1 and q can be 
calculated, as shown in the following table: 
 
   

M (per week) 
N1 (10+E08) 

N1 (1e+8) 
 

q (10E-05) 
q (1e-5) 

 
0.01 3.7 - 4.1 2.2 - 3.2 
0.05 4.7 - 5.3 1.8 - 2.6 
0.1 6.6 - 8.2 1.2 - 2.0 

 
Combining these intervals would give you an interval that you are sure has at least a 95% 
chance of containing the true values.  You can do this by selecting the lowest lower limit and 
the highest upper limit of the 95% CIs from the above table.  This gives an overall 95% 
confidence interval for N1 of 3.7E+8 - 8.1E+8.  Do not be concerned if the Confidence 
Intervals you have generated differ slightly from those shown in the table. This happens 
because CEDA uses a random seed for bootstrap sampling which will be different each time 
Confidence Intervals are generated. See Confidence Intervals for a more detailed discussion 
and some warnings.   
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5.2.2.5 Making projections 
 
You have made a reasonable assessment of the population parameters of the squid stock 
(and their associated uncertainty), based on the data provided in SQUID.TXT.  Using these 
parameter estimates, and their estimated uncertainty, CEDA can make projections to 
investigate the potential effect of possible future levels of catch and effort on the population.  
This is useful both for making forecasts and for investigating the effects of alternative 
management strategies.  The CEDA population projection facility is accessed under 
Projections on the main menu bar.   
 
Before starting the projection, you should make sure that you have the correct fit loaded.  The 
last one we worked on was Illex5.  This included the calculation of confidence limits, which we 
will use later under this section.  Therefore you should make sure that Illex5 is still the loaded 
fit (Use Fit Manager to Load the fit if necessary). 
 
Select Projections from the menu bar.  The only option available on the pull down menu at 
this stage is Set Up Scenarios.  The other options become available once you have added 
your first projection scenario.  Select Set Up Scenarios.  A new window appears with the title 
“Projection Scenarios” and an eye for an icon. The Projection Scenarios window contains a 
data sheet which is used to input and store the projection scenarios. The leftmost column will 
contain the timing for the future projections. To the right of the timing column, each column 
can hold an individual Projection Scenario. The top row in each scenario contains the unique 
descriptor (i.e. the title) for that scenario. By default the first scenario is given the title 
“Scenario1”. The default title can be edited by double clicking on it with the and then typing 
the new title. We suggest you change the title to NEWEFFORT and press <return> In the next 
row down you must specify the type of projection scenario you are going to create.  The 
example we use here is a projection of fishing effort. Effort is given by CEDA as a default, 
however, if you double click on Effort you will see a pull down list of options appears. You 
should select Effort and press return. 
 
The cursor should now be positioned under the heading NEWEFFORT (effort).  You are 
going to enter some numbers in this column which represent possible future levels of effort in 
the fishery.  The column to the left is the timing column.  This will be filled automatically as 
you enter the effort figures.  The first row of the timing column is already completed (week 27) 
because this follows on from the squid dataset on which the projection is based (the last row 
in the dataset was week 26). 
 
We will be projecting the fishery for a further 10 weeks, up to week 36.  The projected effort 
will start at 1000 effort units and decline to 10 effort units over this period.  CEDA assumes 
that the effort units in the projection scenario are the same as in the original dataset. 
 
There are two commands, or ‘hotkeys’ available for entering the projection scenario.  F4 adds 
a row and F5 deletes a row.  At the start the first row of effort data contains 0.000.  Press F4 
and a second row will appear with 28 in the timing column (representing week 28) and 0.000 
in the NEWEFFORT column.  Press F4 eight more times, until the number 36 appears in the 
timing column.  You can also double click below the most recently added time interval to add 
an additional row. You can now use the up and down arrow keys or the mouse to move up 
and down the [NEWEFFORT] column.  Move to the top row.  Type 1000 and then press the 
down arrow key. The number 1000 will appear in the top row and the cursor will move to the 
second row.  Now enter the number 750 in the second row (week 28) and move to the third 
row by typing 750 and then the down arrow key.  Complete the column of data by entering the 
following additional numbers: 500, 450, 400, 350, 300, 250, 50 and 10. The Projections 
Scenario WIndow should now look like that shown below in Figure 5.2.13. 
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Figure 5.2.13  The Projections Scenario Window 

 
 
Close down or minimise the Projection Scenarios window and return to the main CEDA 
application window. Click on the Projections menu option again and you will see that the 
Project option in the pull down menu is now available.  Select Project and a MultiPick dialog 
box will appear on the screen.  The list of available projection scenarios is on the left hand 
side.  So far you have only created one scenario - NEWEFFORT.  You should select this from 
the list in the usual way (click on [>] and then on OK).   
 
A graph appears on the screen with a blue line showing the population size over the period of 
the fishery, and a red line showing projected population size for the period week 27 to the end 
of week 36.  If you had multiple projection scenarios selected then a number of lines would 
appear.  If you want to see the projected trajectory more clearly you can opt to have the 
projection plotted by itself; do this by depressing the ‘tick’ button on the toolbar to turn off the 
fit line. 
 
The graph has been given the default title “Projection #1”. If you wish to change the name of 
the graph you can open up the Graph Control Editor by clicking on the left most button on the 
toolbar. From within the Graph Control Editor select the tab labelled Titles and change the title 
to one of your choice and select OK. 
 
Note: All plots are accessed from the Graph menu by their title. If you change the graph title 
then its name will also change under the Graph menu. 
 
Close down the projection graph and select Projections | Project with Conf. Ints from the 
menu.  This enables you to do the same projection, but including the confidence intervals you 
calculated earlier (saved with fit Illex5).  Note that you will only be able to use the option 
Project with Conf. Ints if the fit which is currently loaded includes calculated confidence 
intervals.  Pick a scenario from the dialog box which appears.  Again, NEWEFFORT is the 
only scenario you have created so far, hence there is only one available.  This time you can 
only choose one scenario, rather than several, because the resulting graph includes error 
bars and plotting more than one projection at a time would lead to a very confused picture.  
Click on OK again.  CEDA then prompts you to specify the confidence interval you want to 
use.  The default provided is 95%.  Accept this by clicking on OK.  CEDA then spends some 
time generating confidence intervals.  When it is finished, a graph similar to the previous one, 
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but with error bars representing the 95% confidence interval, appears on the screen (Figure 
5.2.14). 
 
Figure 5.2.14  Projection with Confidence Intervals 

 
 
Adding a Scenario 
If you return to the Projection Scenarios window again (by maximising it or selecting 
Projections | Set Up Scenarios), you can set up another projection scenario using different 
levels of fishing effort or catch.  Select Add Scenario from the pull down menu (or double 
click anywhere to the right of the existing scenario).  You must specify a new name for the 
projection scenario (each one must have a different name) and indicate the units of the 
projection (Effort, Total Catch Weight, or Total Catch Numbers].  You can enter the data using 
the keyboard as before.  When you have finished, return to the main data window, and repeat 
the procedures described above to run the projection.  Remember that this time you can 
select multiple scenarios from the MultiPick dialog box under the option Projections | 
Project, to plot more than one scenario at a time.   
 
All of the projection scenarios you create are automatically saved in your CEDA file 
SQUID.CD3.  They can be re-run any time you start CEDA and use the File | Open command 
to open the file SQUID.CD3 
 
You have now completed your analysis of the squid data.  In the next section we will go on to 
analyse the tuna data you imported earlier from the file TUNA.CD2. 
 
 

5.2.2.6 Conclusions from the analysis of the squid data set 
 
The no recruitment model with gamma error gives both satisfactory and useful fits to these 
data.  The diagnostic plots (residual/percentile plots) do not highlight any major problems and 
the confidence intervals are narrow.  The importance of considering the model assumptions 
carefully and using background data is illustrated by the arguments used to justify the 
exclusion of the first three data points.  The remaining potential outlier suggests that there 
may still be some problems with the model or the data, but the lack of sensitivity of the 
parameter estimates to this data point indicates the utility of the model.   
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One important conclusion is that the parameter estimates are very sensitive to the value used 
for the natural mortality rate M, and that the data yield very little information about M.  This is 
a common problem which arises when there is a lack of contrast in the data, making it very 
difficult to separate the natural and fishing-related components of total mortality Z.  Given this 
sensitivity, a sensible course for management might be to consider how to improve the 
estimate of M. 
 
 
5.2.3 Tuna tutorial 
 
We will be working on the data set XTuna.cd3 which is located in the default CEDA directory 
(or the directory in which CEDA has been installed). 
Before proceeding with the Tuna data analysis open this file using the File |  Open menu 
option. 
 

 
5.2.3.1 Selection of model, fitting and analysis 

 
There are three columns displayed in the data window: Tot. Catch Wt, Effort and Catch Wt.  
The data in column Catch Wt are the same as those in column Tot Catch Wt.  This is because 
the data in column Effort represent the total fishing effort for the whole fishery rather than for 
just part of the fishery.   
 
Select Fit | New Fit from the menu.  You will see that there are only three models available 
due to the types of data which you have loaded (catch in weight, and effort).  They are all 
Production Models: Fox, Schaefer and Pella-Tomlinson (PT).  Select PROD. MODEL 
(PELLA TOM) from the list and click on OK.  A dialog box appears on the screen requesting 
certain input parameters: 
 
Initial Proportion  
 The degree of exploitation of the stock before the start of the dataset (see Deterministic 
Recruitment/Production (DRP) Models ).  Responses should lie between 0 and 1, with 1 
indicating negligible prior exploitation, and 0 indicating a stock almost completely 
exterminated before the current dataset began.  Prior exploitation of this tuna stock is thought 
to have been negligible, so enter 1 here. 
 
Z Shape Parameter 
 A skewness parameter applying only to the Pella-Tomlinson model (see Pella-Tomlinson 
Production Model); accept the default of 1. 
 
Time Lag 
 This is explained in Time Lags in Production Models; here you should enter 0, which is 
usual for preliminary examination of a dataset 
 
Select Least Squares (Unweighted) from the list of Error Models and leave the other Options 
as they are (neither selected).  Click on OK and CEDA will fit the model.  A plot of Expected 
and Observed Catch appears on the screen (see Figure 5.2.14), as it did when you analysed 
the squid data.  The fit looks reasonable; most of the features of the data have been captured, 
but there are some periods when the observed data are all on one side or other of the fitted 
line, particularly towards the left-hand side of the plot. 
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Figure 5.2.14  Least squares fit to tuna data 

 
 
As with the squid data, the next step is to identify the best error model. Use the Graph menu 
to display plots of Residual Catches vs Time and Residual Catches vs Expected Catches.  
There are patterns in both residual plots; the degree of scatter seems to increase with both 
time and expected catch, and there are two outliers (1951 and 1953).  These patterns 
suggest that least squares may not be the best error model. Close down all graphs and return 
to the main CEDA application window.  Save the fit in the usual way using Fit Manager, 
calling it Tuna1. 
 
You should now examine the performance of the gamma and log transform error models. 
Select Fit | New Input Parameters from the menu.  Use the same values for Initial 
Proportion, Z Shape Parameter and Time Lag as in the last fit (1,1 and 0 respectively).  
Repeat the analysis using the log transform model.  Use Fit Manager to save your work after 
fitting.  Call this new fit Tuna2.  Remember that this fit are saved with the data file 
(XTUNA.CD3). 
 
Now repeat using the gamma error model.  You should now find that an unexpected error 
message comes up, telling you that the minimisation failed, with the further information that it 
"succeeded on function" but failed on "parameter".  This is almost certainly completely 
incomprehensible, and in such circumstances you should try the Help button.  This will direct 
you to the section dealing with the Options menu, where parameters for the minimisation are 
set (see Options menu).   As explained there, the minimisation has converged properly in 
terms of successive changes in the function value being very small , but after 500 iterations 
the individual parameter  values are still changing by too much, so that minimisation on the 
parameter  values is deemed to have failed.  If you reduce the Parameter tolerance value to 
0.001, you should find that the convergence now occurs on both function and parameters. 
That is sufficient for now, but be sure you take heed of the advice regarding minimisation 
parameters when you are analysing your own data sets!  Again, use Fit Manager to save your 
work, calling the fit Tuna3. 
 
Have a look at the residual plots (percentile plots for the gamma fit) by selecting them from 
the Graph menu.  There seems to be less pattern in the residual (percentile) plots for the log 
transform and gamma error models than there was in the least squares plot.  However the 
outliers at 1951 and 1953 are still there. 
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There are now two questions to be answered:  

• what should be done about the outliers? 

• which of the two best error models should be used? 
 
The dotted horizontal lines used as "outlier guides" in the residual (percentile) plots are set so 
that on average 1 data point in 20 will fall outside just by chance.  There are 34 data points in 
this dataset.  The fact that 2 lie outside the outlier guides is therefore not surprising.  
However, the two data points in question are actually quite a long way outside the outlier 
guides.  This is obvious for the log transform model, but less so for the gamma because 
percentile plots are used.  If you display just one percentile plot on the screen at a time, you 
should be able to see that the two outliers are very close to 0 and 1.  They are certainly closer 
to 0.005 and 0.995, where outlier guides for 1 outlier in 100 good data points would appear, 
than they are to the existing "1 in 20" outlier guides.   
 
These two outliers therefore suggest that there is a problem with either the data or the model.  
Unfortunately, there is no extra information available to indicate which might be the source of 
the problem.  There is no reason to believe that these points are suspect, as there was for the 
first three points of squid dataset.  Therefore there is no good reason to exclude them from 
the analysis.   
 
 Remember: Never omit data points from the analysis unless you have a good reason to do 
so. 
 
There are patterns in the residual (percentile) plots of both the gamma and the log transform 
error model fits.  Neither of the error models seem to result in the Pella Tomlinson model 
fitting the data very well in the first few years.  The Residual Catches vs. Expected Catches 
plot for the log transform fit looks particularly bad, showing residuals decreasing with 
expected catch above the middle range of Expected Catch.  The corresponding percentile 
plot for the gamma fit does not show such a pattern as strong as this one.  On the basis of the 
residual (percentile) plots the gamma error model appears to result in the best fit to the tuna 
data 
 
Assessing the Sensitivity to Outliers 
The next step is to assess the sensitivity of the parameter estimates to the outliers.  This 
should be done by running a number of fits using both error models and using all 
combinations of including/excluding the two outliers.  In order to save time in the tutorial we 
have done these extra fits for you.  The following table presents estimates of K (carrying 
capacity) from these fits: 
 

Estimates of K from various fits 
 Fit    Gamma  Log Transform 
All data  1.387E+6  1.880E+6 
Without 1951  1.074E+6  1.416E+6 
Without 1953  2.446E+6  2.598E+6 
Without 1951 and 1953  1.703E+6  1.851E+6 

 
Both error models seem quite sensitive to the outliers, particularly the one in 1953.  The 
gamma is marginally more sensitive than the log transform.  The ratio between the highest 
and lowest estimates of K for the gamma model is 2.446/1.074=2.28, while for the log 
transform model it is 2.598/1.416=1.83.  Note that strictly speaking this sensitivity should be 
assessed on the basis of confidence intervals rather than point estimates (see Confidence 
Intervals).  If this were your dataset, more investigation of these two data points and the 
reasons for the sensitivity would be a high priority.  An appropriate course of action would be 



 

 
 
MRAG CEDA and LFDA enhancement 62 

to run subsequent analyses twice, first including 1951 but excluding 1953, and then vice 
versa.  These are the combinations that give the greatest difference in parameter estimates.  
However, this would take too much time in this tutorial section.  Instead, we will proceed with 
one set of analyses, including all the data in every fit.   
 
The log transform fit seems slightly less sensitive to the outliers, however, there are 
noticeably worse patterns in the log transform residual plots than in the percentile plots of the 
gamma fit.  If this were your own dataset and you were undertaking a full analysis, you should 
investigate the source of the sensitivity to the outliers and residual (percentile) plot patterns in 
both the log transform and gamma fits.  CEDA includes additional diagnostic tools which can 
assist in this investigation, such as the facility to view the minimisation graphically (see the 
Reference and Operating Guide).  However, for the purpose of this tutorial we will pursue a 
single line of analysis using only the gamma error model.   
 
The next stage of analysis is to examine the sensitivity of the fit and the estimated parameters 
to the input parameters (Initial Proportion, Z Shape Parameter and Time Lag). 
 
Initial Proportion 
 Investigate sensitivity to Initial Proportion by successively reducing the input value from 
1.0 (the default) to 0.7.  The stock is thought to have been less heavily exploited before the 
start of the dataset than after it.  It is reasonable to expect the stock size (and hence expected 
CPUE) to fall rather than rise during the first few years of the dataset, in response to the 
increase in the level of exploitation.  Using this criterion, and the evidence from the diagnostic 
graphs, you will find that values of about 0.9 and above lead to reasonable fits, and the 
parameter estimates are insensitive to changes over the range 0.9 to 1.0.  We will therefore 
continue the analysis with Initial Proportion fixed at 1.0. 
 
Time Lag 
 Next we suggest you investigate the effect of varying the Time Lag.  According to the 
biology of the stock, time lags in the range of 0 to 4 could be reasonable.  The following table 
shows the parameter estimates from fits with time lags of between 0 and 4, with all other input 
parameters remaining as they were for the original fit.  You should try at least some of these 
fits yourself and examine the diagnostic plots to see which fits look best. 
 
The effect of Varying the Time Lag on the Parameter Estimates  
 

Time Lag R2 K q r 
0 0.825 1.387 e+6 7.850 e-6 0.4585 
1 0.828 1.614 e+6 6.877 e-6 0.3875 
2 0.833 1.807 e+6 6.219 e-6 0.3442 
3 0.838 1.816 e+6 6.269 e-6 0.3488 
4 0.838 2.006 e+6 5.730 e-6 0.3078 

 
 
The parameter estimates seem to be relatively insensitive to changes in Time Lag within this 
range, although there is some sensitivity in K.  There is little apparent change in the quality of 
the fit, except at a time lag of 4 when the percentile plot Percentiles vs. Expected Catches 
starts to show patterns.  An appropriate course of action might be to conduct further analyses 
using Time Lag values of between 0 and 3, to develop a picture of the potential uncertainty in 
the parameter estimates.  However, to save time in this tutorial we will restrict the following 
analyses to a Time Lag of 0.  We will see later that the variation in the estimated parameters 
resulting from changes in time lag shown in the table are insignificant compared to the 
inherent uncertainty in the data.   
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Viewing the Minimisation Graphically 
Before moving onto the next sensitivity analysis, you should note the negative correlation 
between r and K in the above table.  If you re-do the fit (Fit | New Input Parameters) and use 
the option View Minimisation Graphically you will see a contour plot of r vs. K for the 
parameters you have specified.  When prompted, you should specify the following values to 
fix the limits of the contour plot: 
 
    K: 1e5 - 6e6 
    r: 0.1 - 1.0 
    No. of points to plot:  40 
 
Bear in mind that CEDA will take some time to evaluate the contours for the gamma error 
model, particularly if you are working on a less powerful computer.  The contour plot 
displayed clearly demonstrates the negative correlation between r and K and illustrates the 
shape of the fitting surface over which the non-linear minimisation is searching.  The progress 
of the minimisation algorithm is superimposed on the contour plot. 
 
If you want higher resolution in the contour plot you can increase the Number of points to plot 
up to a maximum of 100, but this correspondingly increases the time taken to evaluate the 
contours. 
 
Z Shape Parameter 
 The final parameter to be investigated is the Z Shape Parameter or skewness parameter 
z.  We have prepared a table of parameter estimates for a range of z, but again you should 
run at least some of these fits yourself to study effects on the quality of the fit. 
 
 The effect of Varying the Z Shape Parameter on the Parameter Estimates  
 

z R2 K q r 
0.5 0.834 1.379 e+6 8.126 e-6 0.791 
0.8 0.827 1.395 e+6 7.988 e-6 0.536 
1.0 0.825 1.386 e+6 7.822 e-6 0.459 
1.3 0.820 1.410 e+6 7.561 e-6 0.375 
1.6 0.816 1.420 e+6 7.337 e-6 0.326 
2.0 0.810 1.476 e+6 6.959 e-6 0.273 

 
There is little difference in quality of fit as z varies between about 0.5 and 2.0, and the 
estimates of K and q are not very sensitive to changes in z within this range.  The estimate of 
r seems to be more sensitive than K and q to changes in z, particularly at the lower end of the 
range.  There is in fact a strong negative, correlation between r and z. 
 
Once again, an investigation of the underlying reasons for this sensitivity in r is outside the 
scope of this tutorial.  During an analysis of your own data you would certainly want to look at 
it in more detail.  However, there are some observations which can be made at this stage.  
The apparent insensitivity of the estimates of K and q and the quality of the fit (which we have 
seen is not very good anyway) over a wide range of z, indicates that there is not enough 
information in the tuna dataset to allow z to be estimated with any reasonable degree of 
precision.  This is similar to the problems involved in estimating the natural mortality rate M 
from the squid dataset. 
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5.2.3.2 Generating confidence intervals for the tuna data 
 
The generation of confidence intervals using the bootstrap method requires the fitting process 
to be repeated 500 times (this can be changed to a different number of bootstraps under the 
Options menu).  Depending on the error model being used, and the power of your computer, 
this can take a considerable amount of time.  The gamma error model is unfortunately the 
slowest! To save time in this tutorial the CEDA data file on which you are working 
(XTUNA.CD3) contains a pre-computed set of confidence intervals for the gamma error 
model.  
 
Using Fit Manager reload the fit called gamconf from the list of available logged fits.  This 
logged fit contains confidence intervals generated using the whole tuna data set, with the 
following specifications:  
 
  Z Shape Parameter = 1 
  Initial Proportion = 1  
  Time Lag = 0 
  Gamma error model  
  Num. Bootstraps = 1000 
 
View the graphs on the Graph menu to get an idea of the shapes of the distributions, and 
note the numerical confidence intervals from the Parameter Estimates window.   
 
The conclusions drawn earlier about the sensitivity of the model to various assumptions 
should be considered in terms of these confidence intervals.  For example the 95% interval 
for K ranges from 7.81e+5 to 5.72e+6.  The changes in K resulting from the changes in time 
lag and z shown in the above tables are well within this range.  Such changes can be thought 
of as insignificant when compared to the uncertainty inherent in the data.  Similarly the 95% 
interval for r ranges from 0.040 to 0.875, which is greater than the variation in r resulting from 
changes in z of between 0.5 and 2.0. 
 
The confidence intervals for the gamma fit are very large.  The estimated Maximum 
Sustainable Yield (MSY) is about 160,000 tonnes, but the lower limit of the 95% confidence 
interval of MSY is only 55,000 tonnes.  There is corresponding uncertainty in the estimate of 
replacement yield.  Nevertheless, as with the squid data, these limits may not reflect the true 
extent of the uncertainty in the tuna data.  A reasonable course of action for further analysis 
would be to generate a range of confidence intervals using different combinations of 
influential input parameter estimates and including/excluding influential points (e.g. the 
outliers in 1951 and 1953).  A final conservative confidence interval can then be estimated by 
taking the highest upper limit and lowest lower limit over all of the resulting confidence 
intervals. 
 
 

5.2.3.3 Conclusions from the analysis of the tuna data 
 
No matter what parameter adjustments are made to the Pella-Tomlinson model, substantial 
discrepancies remain between this model and the tuna data.  The residual or percentile plots 
show trends and runs of positive and negative residuals.  There are also two unresolved 
outliers.  It is clear that there are problems, either with the suitability of the model or with the 
data, which require further investigation. 
 
In terms of the information content of the data, the confidence intervals produced in this 
analysis are wide, and the results are sensitive to the inclusion or exclusion of the outliers, as 
well as to some input parameters.  There is no chance of estimating z with any precision from 
these data alone, but the value chosen substantially affects the estimates of r (although the 
range of r for z's of 0.5 to 2.0 is within the limits of the 95% confidence interval.  The 
diagnostics in CEDA prove useful in eliminating certain possibilities, such as the least squares 
error model, low values of initial proportion and time lags of > 3 (background biological 
information rules out time lags higher that 4).  However, it is difficult to draw firm conclusions, 
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because the information content of the data appears rather low, despite the number of data 
points.   
 
This dataset is in fact an example of a "one-way trip", as discussed in Chapter 9 of Hilborn 
and Walters (1992).  The lack of contrast in the data means that good parameter estimates 
would always be difficult to obtain.  For a fishery manager interested in guidelines for 
management, such as MSY, it would be sensible to think about a number of ways of 
improving the analysis.  For instance, there may be other ways of deciding what value(s) of z 
to use.  Ultimately it might be more sensible to use a simpler production model such as 
Schaefer or Fox which have fewer input parameters.  Methods of improving the contrast in 
future data from the fishery might also be considered.  Some ways of doing this are discussed 
in part IV of Hilborn and Walters (1992). 
 
 
6. Contribution of outputs 
 
The revised CEDA and LFDA software will provide scientists and fishery officers in 
developing countries with access to modern Windows versions of the popular but dated Dos 
versions of these programs.  Able to run in Windows 95 or later operating systems, both 
packages now have easy-to-use interfaces to other spreadsheet, database and graphics 
software that are commonly used.  The revised packages will therefore enhance the use of 
the stock assessment methods embodied within them and thereby further facilitate 
development of sound scientific advice to fishery managers. Such improved scientific advice 
will enhance the likelihood of sustainable management of vital fishery resources, which in 
developing countries often represent major sources of animal protein, employment and 
income. 
 
 
7. References 
 
Hilborn, R. and Walters, C. J. (1992)  Quantitative Fisheries Stock Assessment.   Chapman & 
Hall. 
 
Pauly, D. (1987) A review of the ELEFAN system for analysis of length-frequency data in fish 
and aquatic vertebrates. Pages 7-34 in Pauly, D. and Morgan, G. R. (Eds) Length-based 
methods in fisheries research. ICLARM, Manila, Philippines and KISR, Safat, Kuwait. 468p. 
 
Rosenberg, A. A., Kirkwood, G. P., Crombie, J. A. and Beddington, J. R. (1990)  The 
assessment of stocks of annual squid species.  Fisheries Research 8:335-350. 
 


